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ABSTRACT
Individuals’ personal information collections (their emails, files,
appointments, web searches, contacts, etc) offer a wealth of in-
sights into the organization and structure of their everyday lives.
In this paper we address the task of learning representations of
personal information items to capture individuals’ ongoing activi-
ties, such as projects and tasks: Such representations can be used in
activity-centric applications like personal assistants, email clients,
and productivity tools to help people better manage their data and
time. We propose a graph-based approach that leverages the inher-
ent interconnected structure of personal information collections,
and derive efficient, exact techniques to incrementally update rep-
resentations as new data arrive. We demonstrate the strengths of
our graph-based representations against competitive baselines in a
novel intrinsic rating task and an extrinsic recommendation task.

ACM Reference Format:
Tara Safavi, Adam Fourney, Robert Sim, Marcin Juraszek, Shane Williams,
Ned Friend, Danai Koutra, and Paul N. Bennett. 2020. Toward Activity Dis-
covery in the Personal Web. In The Thirteenth ACM International Conference
onWeb Search and Data Mining (WSDM ’20), February 3–7, 2020, Houston, TX,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3336191.
3371828

1 INTRODUCTION
In his influential 1945 essay As We May Think, Vannevar Bush out-
lined his vision for a “memex”, a device in which “an individual
stores all his books, records, and communications, and...may be
consulted with exceeding speed and flexibility” [4]. His vision is
well-known, having inspired generations of research and develop-
ment in computing [9, 30]. Perhaps less known, however, is that
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Figure 1: A personal web consisting of two activities.

Bush motivated his memex by the associative nature of the hu-
man mind: “With one item in its grasp, it snaps instantly to the
next that is suggested by the association of thoughts...[it] is awe-
inspiring beyond all else in nature”. In this work we expand on the
idea of associating individuals’ personal information items—what
Bush called books, records, and communications, and what today
might be files, emails, and messages—according to their higher-level
purposes and usages. Specifically, our central research question is:
Can we learn representations of personal information ob-
jects (files, emails, messages, appointments, search queries,
contacts, etc) to support downstream settings that rely on
knowledge of people’s activities (projects, hobbies, tasks)?

Motivations and challenges. The goal of activity discovery is to
help people better organize, retrieve, and utilize their personal
information. For example, modern email clients support tagging
and foldering, but individuals struggle to maintain these efforts
because manual curation is costly [12, 13, 33, 34]. We envision next-
generation email clients that automatically learn users’ ongoing
activities to organize or even prioritize emails and meetings based
on those activities. Semantic and conversational search systems
can also benefit from inferring users’ activities. For example, such
systems could allow users to directly search by concept or activity
(e.g., “Show me all receipts related to my home remodel”). Even
helping people understand how they spend their time by activity
can be useful for productivity-related reflection and planning.

However, this direction comes with unique challenges. For one,
people’s activities are complex and fluid. They can exist on varying
time scales and evolve over time. Some activities overlap with, or
subsume, one another. Ideally, automated approaches to personal
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activity discovery should capture such complexity. Another chal-
lenge is that of evaluation, which is difficult due to (well-founded)
privacy concerns, a lack of standardized methodology, and the high
cost of obtaining explicit feedback [35].

This work. Guided by the concept of associations between items, we
learn representations of people’s personal information objects such
that objects related by activity have similar representations and can
be directly compared regardless of type. We leverage the inherent
graph structure of personal information collections, augmenting
items with interaction- and structure-based links to form what we
call a personal web. Key contributions of this work include:
• Methodology. We propose to model individuals’ personal infor-
mation collections as graphs, and learn unsupervised entity rep-
resentations with a propagation-based objective. We derive ef-
ficient, exact techniques to update representations as new
data arrive, up to 470× faster than learning from scratch (§ 3,
§ 6). Our model can produce human-interpretable represen-
tations, and can also implicitly capture semantic differences in
entity types while still representing items in a common space.

• Evaluation. We conduct a pair of complementary evaluations.
Our first task, which directly tests for activity-specific relation-
ships among individuals’ personal information objects (§ 4), is
to the best of our knowledge the first intrinsic evaluation
of graph representations involving pairwise human judg-
ments. By contrast, our second evaluation task, email recipient
recommendation, is extrinsic (§ 5). In both tasks, our representa-
tions outperform competitive baselines across a variety of
metrics. We provide in-depth analysis of our evaluation tasks
to inform future work in this area.

2 RELATEDWORK
Personal information management. Personal information manage-
ment (PIM) addresses how people organize and retrieve items from
their personal information collections [30]; for brevity, we refer the
reader to [20] for a comprehensive overview of the literature. A
representative, highly influential example is Stuff I’ve Seen (SIS) [9],
a unified search index aggregating heterogeneous personal infor-
mation objects from users’ desktops. SIS was followed by Implicit
Query [11], an email plug-in that automatically displays desktop
items related to the user’s current email of focus. These early works
motivate our goal of unifying heterogeneous personal information
objects, as they provide empirical evidence that people prefer such
unified systems [9]. Recent works develop privacy-preserving ma-
chine learning approaches for PIM, most often for email [1, 35, 36].
For example, Zhao et al. [36] devise CAPERS, a personal recom-
mender system that displays workplace emails to users based on
their upcoming meetings. The authors find that an online learn-
ing variant of CAPERS performs best with users, which directly
motivates our goal of online model updating (§ 3.1).

Activity inference. The literature on inferring individuals’ activi-
ties over personal information items focuses mostly on email [7, 8,
25]. Dredze et al. [7] devise a supervised method to classify emails
into activities by calculating overlap statistics among email mes-
sages and known activities. More recently, Qadir et al. [25] learn
activities from workplace email with an unsupervised generative

model that considers contexts like subject line, recipients, and lin-
guistic features of emails. A major difference between these works
and our own is that we wish to discover activities that span multiple
types of objects, including but not limited to email. From a problem
setting perspective, the TaskTracer system [26] for activity manage-
ment over heterogeneous desktop items is more related. However,
TaskTracer is supervised and requires users to enforce a hierarchy
over their data, whereas we take an unsupervised approach.

Graph similarity search. Because we model personal information
collections as graphs, our task can be cast as a similarity search
problem among nodes in a graph [17, 28]. Similar to our setting
from an individual perspective, McAuley and Leskovec [22] learn
“social circles” in personal social networks with a generative model
that accounts for both links within circles and user-user profile
similarity. More recently, vector representations, and in particular
dense embeddings of nodes, edges, and/or whole graphs, have be-
come popular as versatile catch-alls for network-based tasks that
rely on similar representations of similar objects [14, 16, 18, 24, 29].
While recent work proposes embeddings for professional email
networks [19], we are not aware of any approaches specifically
tailored to individuals’ heterogeneous personal information items.

3 METHODOLOGY
In this section we first define the problem of activity discovery. We
then introduce our graph-based representations of heterogeneous
personal information items, and show that we can efficiently obtain
these representations in both offline and online settings.

3.1 Problem statement
According to Dredze et al. [7], activities are collaborative practices
that have state and a goal (e.g., organizing a conference). Using this
definition, we state the following desiderata for activity discovery
over heterogeneous personal information collections:

• Privacy-preserving. Personal information collections are highly
private and contextual, with overloaded terms and concepts that
often do not generalize across individuals [1]. Our model should
therefore operate on a per-person basis, directly on personal
devices, without leveraging collective patterns across users.

• Requires no supervision. Manually organizing personal data
into, e.g., social circles or email folders, requires a nontrivial
amount of effort [22, 33]. Accordingly, we do not assume the
presence of labeled data, although an ideal model should be able
to incorporate activity labels if available.

• Online updates. Individuals’ activities naturally change over
time. To handle this evolution, we should be able to incrementally
and efficiently update our model as new data arrive.

We state our research problem as follows: Given an entity e from
an individual’s heterogeneous personal information collec-
tion C, find entities e ′ that are “related” or “associated” to e
in the context of u’s activities in a manner that (1) preserves
privacy by being learned on an individual, on-device basis,
(2) is unsupervised, and (3) can operate in an online setting.



Figure 2: Obtaining representations of personal information
items via propagation over the personal web G.

3.2 Model overview
As our problem statement is open-ended, several classes of method-
ology could be employed. For example, a retrieval approach would
rank the most related entities e ′ to a query entity e in terms of
activities, whereas a clustering approach would directly group en-
tities into activities. To handle this open-endedness we propose
to learn versatile representations of heterogeneous personal infor-
mation items that can be used in numerous settings like retrieval,
clustering, and classification. Our approach emphasizes two ideas:
First, that personal information objects have inherent graph struc-
ture (Figure 1); and second, that closely-connected objects sharing
features indicative of activities should have similar representations.

3.2.1 Graph-based representations. Given an individual’s personal
information collection C , we construct a graph G from C .1 We call
G the personal web associated with that individual. Each entity
(node) inG has an associated type, such as Email, Calendar Appoint-
ment, or Contact, and may be associated with additional temporal
and textual features, for example email sent times, subject lines,
etc. Each edge in the graph encodes a semantically meaningful
relationship between entities. For example, an edge connecting a
Calendar Appointment to a Contact might signify that the appoint-
ment was organized or attended by that person. Following standard
practice [22], a personal web does not include the individual who
owns the data. In practice, a personal web can be instantiated in
many different ways, the effects of which we illustrate in § 3.2.3.

We learn entity representations with a propagation process over
G that yields similar representations for entities that are closely-
connected inG and/or share similar features. The propagation starts
from a set of seed entities in G that are associated with “activity-
specific” attributes, which are textual, temporal, or other attributes
indicative of activities (examples given in § 3.2.2). Formally, let
X ∈ Rn×p be a matrix in which nonnegative entry Xi j corresponds
to entity i’s membership strength in activity-indicating attribute j.
We propagate the seeds’ attribute membership strengths Xi j across
the graph to learn X̂ ∈ Rn×p , the entity-attribute membership
matrix for all entities in G, by minimizing the loss function

L(X̂) =
X̂ − X

2
F + λ tr

(
X̂⊤LX̂

)
, (1)

where the graph’s Laplacian is given as L = D − A for diagonal
degree matrix D and symmetric adjacency matrix A. The first term
in (1) constrains the learned attribute values for seed entities to
be close to their initial values. The second term enforces graph
1In this paper we experiment with unweighted and undirected graphs, but our model
can be straightforwardly extended to handle edge weights and directionality.

(a) Log-log cumulative degree
distribution in the personal web,
stratified by type.

(b) Average representation den-
sity, using noun phrases as at-
tributes, stratified by type.

Figure 3: Capturing semantic differences in entity types
through representation density for a random Medium in-
box from the Avocado dataset (Table 3). On average, Con-
tact nodes have the highest degrees and thus the densest
representations, reflecting that people usually participate in
more activities than other types of entities.

smoothness and yields similar learned attribute-value distributions
for linked entities, controlled by regularization hyperparameter
λ (explored in § 5.3). Note that (1) recalls label propagation and
convolutions over graphs [21, 37], but such techniques are typically
used to predict node classes, which is not our goal. Rather, we use
propagation to obtain entity representations: The i-th entity’s
final representation is given as x̂i , the i-th row of X̂.

3.2.2 Entity attributes. The propagation seed matrix Xmaps select
entities to attributes that directly or indirectly indicate activities. In
the unsupervised case, which is the focus of this work, we consider
text-bearing entities like emails and files as seeds, using textual cues
to indicate activities. Specifically, we experiment with noun phrase
frequencies and latent topic memberships (LSA [6] and LDA [3])
as attributes and their associated strengths: Noun phrases often
directly correspond to project, task, or goal names [2], whereas
latent topics capture semantic relatedness among groups of doc-
uments. Importantly, when noun phrases are used, our approach
can produce fully human-interpretable representations, since the
columns in X correspond to natural language. It also naturally han-
dles semi-supervision: We can consider activity labels as attributes
if available, although we leave this direction for future work.

3.2.3 Entity type semantics. Our representation approach implic-
itly captures entity type semantics via representation density. Fig-
ure 3 illustrates this effect with a graph from the Avocado dataset
(§ 5) consisting of the following relations: Contact-Email, signifying
who sent or received a specific email; Email-Email, signifying direct
replies on email threads; and File-Email, signifying files attached to
emails. Figure 3a demonstrates that a node’s degree corresponds
strongly with its type: The degrees of Contact entities are up to
orders of magnitude larger than those of Emails and Files.

Figure 3b demonstrates that Contact entity representations are
on average twice as dense as Email and File entity representations,
due to their having higher degree. In this case, the higher density of
Contact entities reflects the idea that people usually participate in
more activities than do single emails or files. This effect is an advan-
tage of our approach: We allow entities’ representation densities to
vary according to their type semantics, while still representing all
heterogeneous objects in a shared vector space.



3.3 Model inference
3.3.1 Offline setting. We are given a graphG and its corresponding
Laplacian matrix L. To find the entity-attribute membership matrix
X̂, we first take the derivative of (1) with respect to X̂:

∂L

∂X̂
= 2

(
X̂ + λLX̂ − X

)
.

Setting the derivative to 0 and solving for X̂, we obtain

X̂ = (I + λL)−1 X, (2)

where I is the identity matrix. In practice, to avoid a computationally
prohibitive matrix inversion, we solve for each column of X̂ with
Jacobi iteration, which is guaranteed to converge because thematrix
inverted in (2) is diagonally dominant:

x̂(j+1)i = (I + λD)−1
(
xi + λAx̂

(j)
i

)
, (3)

where xi is the i-th column of X, and x̂(j)i is the i-th column of X̂
in the j-th iteration.

3.3.2 Online setting. In a more realistic setting, we wish to incre-
mentally update entity representations X̂ as new data arrive over
time. We make the mild assumption that as new data arrive, entity
attributes and their strengths can be obtained on-the-fly rather
than requiring a full pass over the data; for example, this is true
when we take noun-phrases as attributes, but not when we require
a decomposition of the full document-term matrix (e.g., LSA, LDA).

The online setting consists of two cases:
• Case 1: Only the graph structure changes, meaning a new per-
sonal information object arrives (e.g., an email) and/or a new
link between objects arrives (e.g., an email is forwarded to a
colleague), without observing new attributes.

• Case 2: Both the graph structure and the graph’s attributes
change, meaning in addition to structural changes in G we ob-
serve new textual information, like an unseen noun phrase.

We begin with Case 1. Given newly observed edge (i, j), let ∆D
and ∆A represent rank-one updates to D and A, respectively, such
that the updated degree matrix is Dnew = D + ∆D, the updated
adjacency matrix is Anew = A + ∆A, and the updated Laplacian is

Lnew = Dnew − Anew = (D − A) + (∆D − ∆A) = L + ∆L. (4)

Because only the graph structure changes, the online objective
matches (1), except that Lnew replaces L. Therefore, following (2),
the closed-form solution of the online objective is

X̂new = (I + λLnew)−1 X = (I + λL + λ∆L)−1 X. (5)

Equation (5) can be naively solved with Jacobi iteration as in § 3.3.1,
but we devise a faster approach that reuses previous computation
and arrives at the same solution as our offline model. The key
to efficiency is that both ∆D and ∆A are rank one and can be
expressed as outer products. Letting ei ∈ Rn be an indicator vector
with its i-th entry equal to one, and zero elsewhere, we can express
∆D = eie⊤i + eje

⊤
j and ∆A = eie⊤j + eje

⊤
i . It then follows that

∆L = ∆D − ∆A → From (4)

= (ei − ej )(ei − ej )⊤ (6)

is also rank one. Using the Sherman-Morrison formula for rank-one
updates to a matrix inverse [27], it follows that

X̂new = (I + λL + λ∆L)−1X → From (5)

=
(
I + λL + λ(ei − ej )(ei − ej )⊤

)−1 X → From (6)

=

(
(I + λL)−1 −

(I + λL)−1λ(ei − ej )(ei − ej )⊤(I + λL)−1

1 + (ei − ej )⊤(I + λL)−1λ(ei − ej )

)
X

= X̂ −
(I + λL)−1λ(ei − ej )(ei − ej )⊤X̂
1 + (ei − ej )⊤(I + λL)−1λ(ei − ej )

,

where on the last line we substitute (I + λL)−1X = X̂ as per the
closed form in (2). Now, letting

u = (I + λL)−1λ(ei − ej ) (7)

and

v⊤ =
(ei − ej )⊤X̂

1 + (ei − ej )⊤u
, (8)

we can write the rank-one update to X̂ as

∆X̂ = X̂new − X̂ = −uv⊤, (9)

meaning that per newly observed edge, we only need to update X̂
with the outer product in (9).

In Case 2, where the new edge (i, j) contains at least one entity
with previously unobserved attributes, we propagate these new
attributes across the graph using (3) and add the result, along with
the result of (9), to X̂. We demonstrate theoretically (§ 3.3.3) and
empirically (§ 6.2) that this outer product formulation results in
orders of magnitude performance improvement.

3.3.3 Complexity analysis. Let n be the number of entities and
m be the number of edges in G. In the offline setting, solving for
each column of X̂ requires O(m) time for a fixed number of Jacobi
iterations, since the matrix to be inverted in (2) has O(m) nonzero
entries. Thus, with p attributes, the total complexity is O(mp).

In the online setting, solving for u takes O(m) time, again using
the Jacobi method. Computing v takes O(np) time for X̂ ∈ Rn×p ,
and taking the outer product uv⊤ is also O(np) for u ∈ Rn and
v ∈ Rp . Therefore, the total complexity of evaluating (9) without
observing a new entity is O(m + np). If a new entity e is observed,
according to our offline analysis the complexity is O(mpe ) where
pe is the number of attributes for entity e (usually small in practice).
Note that we must add new rows and columns to L and X as neces-
sary, but this operation scales with the number of nonzero matrix
elements when implemented with sparse matrices. Therefore, the
total complexity is O(m + np +mpe ) = O(mpe + np).

4 INTRINSIC EVALUATION
Our first mode of evaluation is intrinsic: We obtain activity relat-
edness judgments from people on their own data, which is crucial
because such judgments are nuanced and depend on knowing con-
text and lived experience [10]. Though limited to a small set of
individuals, our intrinsic evaluation allows us to directly charac-
terize our approach. We complement it with a large-scale extrinsic
evaluation in § 5, which measures downstream task performance
on a public dataset in lieu of direct judgments on private data.



It is important to note that we are not aware of any prior work
that evaluates graph representations via pairwise human judgments.
We hope the present work invites further discussion from the com-
munity on intrinsic evaluations of graph representations.

4.1 Data
4.1.1 Data collection and preprocessing. Wedeveloped an on-device
logging application that all task participants (§ 4.2.1) installed on
their primary work computers at least two days prior to the rating
task. The application indexes all emails and calendar appointments
previously downloaded to the participant’s machine, and further
records the participant’s interactions with these and other personal
information items on her desktop. Metadata of these items include,
e.g., the people associated with an email, the textual content of
a file, when an individual clicked on a meeting, how long she fo-
cused on a web page, etc. Importantly, all logs are stored locally,
the logging tool does not upload any information to the cloud, and
all evaluation scripts using these logs were run locally on partici-
pants’ computers from a USB drive. We collected only aggregate
task performance metrics (§ 4.2.5) from each participant.

For preprocessing, we discard placeholder emails/appointments
(e.g., “automatic reply”), emails/appointments from senders that
the participant never personally contacted, emails without the par-
ticipant on the To, From, or CC lines, emails that the participant
only sent to herself, and, following [25], emails/appointments with
over 10 recipients. To capture a rough notion of “importance”, we
retain only web documents/files that the participant dwelled on for
at least 10 consecutive seconds. As textual attributes, we extract
noun phrases from email/appointment subject lines and documen-
t/file titles. We remove general and domain-specific stopwords (e.g.,
filename extensions like “pdf”, email abbreviations like “fwd”) and
phrases that often appear in search results (“Google Search”).

4.1.2 Graph construction. Each personal web consists of Email,
Calendar Appointment, Web Document, File, and Contact entities.
We define the following edge relations: (1) Contact-Email, connect-
ing people to emails that they sent, received, or were CC’ed on;
(2) Contact-Calendar Appointment, connecting people to calendar
appointments that they organized or attended; (3-4) Email-Web Doc-
ument andCalendar Appointment-Web Document, connecting emails
and appointments to web documents if the participant accessed
the document immediately after reading the email or appointment
(e.g. when clicking a link in the email body); (5-6) Email-File and
Calendar Appointment-File, connecting emails and appointments to
desktop files if the participant accessed the document immediately
after reading the email or appointment; (7) Email-Email, connecting
pairs of emails that appeared consecutively in a thread (i.e., replies).
We construct each personal web from the participant’s two most
recent months of data for ease of contextualization.

4.2 Task definition
4.2.1 Participants. We recruited n = 10 participants (5 female,
5 male, ages 18-54) from a large enterprise technology company.
Participants P1-P4 were interns, participants P5-P8 were software
engineers, and participants P9 and P10 were senior researchers or
research managers. Each participant was paid $25 upon completion

of the task, which took about 30 minutes on average. The number
of entities in each participant’s personal web is given in Table 2.

4.2.2 Setup. Our task presents participants with pairs of their
own personal information objects, and asks them to relate those
pairs of objects in the context of their activities. Per system to be
evaluated (§ 4.2.4), we identify pairs of related objects by following
an information retrieval-style approach: Given a randomly sampled
entity e (the “query”), the system constructs an ordered list of k ≤ 5
candidate entities e ′ , e it believes are “related” in terms of the
participant’s activities (to diversify results, we return only one
email per email thread). Participants performed the task through a
locally hosted web application. To fit the allotted time of the task, as
each pair took about 30-45 seconds to rate, we limited the number
of ranking systems and query entities such that each participant
rated up to 60 pairs: 3 query entities e × up to 5 candidate related
entities e ′ × 4 ranking systems (§ 4.2.4).

4.2.3 Questionnaire. Each pair of entities displayed to the partici-
pant is associated with two questions:
• Question 1 asks how the pair of items are related (“Why do
you think the system related this pair of entities?”). The answer
choices are: (1) Low-level, “These entities correspond to the same
short-term task, appointment, or goal (e.g., a meeting, a TODO)”;
(2) Mid-level, “These entities correspond to the same long-term
project or activity (e.g., a research project, a home remodel)”;
(3) High-level, “These entities correspond to the same general
life category, not necessarily with defined start or end dates
(e.g., Personal, Professional, School)”; (4) Other, “These entities are
related for reasons not listed above”; (5) Not related, “The system
is wrong. I cannot find any relationship between these entities”;
and (6) Unsure, “The system may have its reasons, but I don’t
recognize one or more of these entities”.

• Question 2 asks the participant to assess the degree of activity-
specific “relatedness” of the displayed pair (“In your opinion, how
related is this pair of entities?”). The choices form a graded scale,
scored as follows: Strongly related (4 points), related (3 points),
somewhat related (2 points), a little related (1 points), and not
related at all or unsure (0 points).

4.2.4 Systems compared. Due to the allotted time and cost of the
task, and the fact that all scripts ran locally on personal machines,
we restricted the task to two variants of our approach and two
promising baselines. The variants of our representations rely
on different activity-related attributes from text-bearing entities:
• NP: Seed entities’ attributes are the noun phrases they contain,
and their respective strengths are their frequencies.2

• LSA [6]: As attributes we take the rank-32 SVD of the document-
phrase frequency matrix, treating each dimension of the decom-
posed matrix as a topic.

We set λ = 102 for both variants to emphasize the graph struc-
ture. After learning representations X̂, we return query entity e’s k
nearest neighbors e ′ in vector space, ranked in increasing order of
Euclidean distance to the query entity e’s vector representation. We
compare to two baselines selected out of a number of approaches

2For this variant we do not differentiate between the offline and online versions of our
representations, since they yield the same results.



Table 1: Average performancemetrics per system averaged across all participants.
Highest score among systems per metric shaded. Top group of rows: Averages
across all pairs rated by participants as a little related or above. Bottom group of
rows: Averages for pairs rated as strongly related only.

A little related, somewhat related, related, and strongly related pairs
Recall Prec@1 Prec@2 Prec@3 Prec@4 Prec@5

People Overlap 0.450 ± 0.11 0.933 ± 0.13 0.933 ± 0.11 0.922 ± 0.11 0.933 ± 0.10 0.933 ± 0.11
node2vec 0.440 ± 0.10 0.900 ± 0.21 0.867 ± 0.16 0.844 ± 0.17 0.858 ± 0.14 0.867 ± 0.14
Ours-NP 0.444 ± 0.07 0.967 ± 0.10 0.933 ± 0.11 0.911 ± 0.12 0.900 ± 0.11 0.867 ± 0.13

Ours-LSA 0.478 ± 0.07 1.000 ± 0.00 0.983 ± 0.05 0.944 ± 0.10 0.925 ± 0.10 0.907 ± 0.12
Strongly related pairs only

Recall Prec@1 Prec@2 Prec@3 Prec@4 Prec@5
People Overlap 0.319 ± 0.11 0.370 ± 0.25 0.370 ± 0.20 0.290 ± 0.17 0.265 ± 0.14 0.247 ± 0.15

node2vec 0.447 ± 0.25 0.333 ± 0.31 0.352 ± 0.32 0.333 ± 0.27 0.306 ± 0.19 0.274 ± 0.16
Ours-NP 0.507 ± 0.24 0.519 ± 0.28 0.481 ± 0.21 0.420 ± 0.21 0.398 ± 0.21 0.356 ± 0.20

Ours-LSA 0.522 ± 0.23 0.407 ± 0.26 0.407 ± 0.19 0.383 ± 0.20 0.380 ± 0.21 0.356 ± 0.18

Figure 4: Question 1 answers by system
across all participants.

Table 2: Average relatedness grade (Question 2) out of 4 across participants P1-P10. Parenthe-
ses: Each system’s rank per participant; lower is better. Top: All entity pairs; Bottom: Email-
Email pairs only. Last column: Grades and ranks averaged across all participants.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg. grade (rank)# entities in G 157 258 320 303 256 291 203 232 1468 1637
All pairs of entities

People Overlap 2.00 (4) 2.47 (1) 2.67 (4) 1.87 (4) 2.77 (1) 2.00 (1) 2.00 (2) 2.00 (3) 2.43 (3) 2.13 (3) 2.22 ± 1.23 (2.60)
node2vec 2.33 (1) 2.40 (2) 3.07 (3) 1.93 (3) 2.33 (2) 1.87 (2) 1.80 (3) 1.93 (4) 2.20 (4) 1.73 (4) 2.16 ± 1.38 (2.80)
Ours-NP 2.27 (2) 1.93 (4) 3.53 (1) 2.13 (1) 2.27 (3) 1.87 (2) 1.80 (3) 2.53 (1) 2.73 (1) 2.60 (2) 2.37 ± 1.43 (2.00)

Ours-LSA 2.13 (3) 2.13 (3) 3.27 (2) 2.07 (2) 2.27 (3) 1.87 (2) 2.27 (1) 2.47 (2) 2.53 (2) 2.80 (1) 2.38 ± 1.38 (2.10)
Email-Email pairs only

People Overlap 2.60 (2) 2.67 (1) 2.44 (4) 1.75 (3) 2.55 (4) 1.69 (4) 2.20 (1) 2.33 (3) 2.46 (2) 2.13 (3) 2.26 ± 1.30 (2.70)
node2vec 2.60 (2) 1.88 (3) 2.78 (3) 1.80 (2) 3.71 (1) 2.00 (1) 1.00 (3) 1.62 (4) 2.14 (4) 1.73 (4) 2.07 ± 1.39 (2.70)
Ours-NP 2.40 (4) 1.83 (4) 3.29 (1) 1.67 (4) 3.62 (2) 2.00 (1) 1.00 (3) 2.57 (1) 2.50 (1) 2.33 (2) 2.40 ± 1.40 (2.30)

Ours-LSA 2.80 (1) 2.29 (2) 2.88 (2) 2.00 (1) 3.62 (2) 1.89 (3) 2.11 (2) 2.43 (2) 2.42 (3) 2.79 (1) 2.54 ± 1.30 (1.90)

Figure 5: Question 2 answer
averages stratified by answers
to Question 1.

from retrieval, clustering, and embedding based on their perfor-
mance in an independent pilot study involving six participants:

• People Overlap [7]: For each query entity e , we compute the
Jaccard similarity between the people involved in e and all other
entities e ′ excluding the participant, then rank the entities e ′ by
similarity score and return the top k .

• node2vec [14]: We choose node2vec, which is based on the
word2vec architecture [23], among other graph embeddings for
its widespread usage and lightweight time and space complexity.
For this baseline we first augment each participant’s personal
web by including nodes representing noun phrases and edges
connecting entities to the noun phrases that they contain, simi-
lar to [1, 29]. We then apply node2vec on the augmented graph
using its default parameter settings [14]. For each query entity e ,
we find its k nearest neighbor entities e ′ in embedding space.

4.2.5 Performance metrics. Per participant we collect only aggre-
gate system performance metrics from the judgment task. Given a
threshold of relatedness from the participant’s answers to Question
2 (e.g., a little related up to strongly related), we compute recall
and precision@k . When computing recall, we form the ideal set of
related entities by pooling judgments across methods and baselines.

4.3 Results and discussion
Table 1 gives performance metrics averaged across all study par-
ticipants. The first group of rows in Table 1 uses a permissive

binarization of the “relatedness” scale (Question 2), considering
pairs to be related unless the participant responded unsure or not
related at all. The second group of rows uses a stricter binarization
of relatedness, considering pairs to be related only if the participant
chose strongly related. It is evident from Table 1 that all systems are
able to identify related entities when the definition of “relatedness”
is relatively loose. Our LSA representations mostly perform best
here except for lower ranks of precision, where People Overlap
performs best. However, with a stricter definition of relatedness,
our NP representations mostly perform best.

It should be noted that the standard deviations in Table 1 are
relatively high. We hypothesize that the variance can be partially
explained by participants’ varying roles in the workplace, which
we found to be correlated with interpretations of the term “ac-
tivity”. For example, our representations performed well for the
senior-level participants with many ongoing activities, whereas the
People Overlap baseline worked well for junior-level employees
with fewer ongoing professional activities. We found that senior-
level participants (e.g., principal researchers, managers) tended to
have many ongoing activities involving the same group of people,
so more fine-grained textual cues were needed to distinguish these
activities. By contrast, participants with fewer ongoing professional
activities (e.g., interns, individual contributors) tended to view their
activities as shaped primarily by the people involved.

We explore this effect further in Table 2, where we demonstrate
each system’s performance per participant along with the size of



each participant’s personal webG as measured by the number of
entities in the graph. In Table 2, the first group of rows gives average
grades for Question 2 (out of 4) and average system ranks (lower
is better) for all pairs of rated pairs. We find that our NP and LSA
representations perform the best overall, whereas the performance
of node2vec is middling and People Overlap is more polarized.
The second group of rows gives the same information for Email-
Email pairs only. Here our LSA representations perform by far the
best, likely because taking the SVD of the document-term matrix
better groups entities into high-level “topics” [6].

Figure 4 shows what kinds of related items each system found ac-
cording to participants’ responses to Question 1 (“Why do you think
the system related this pair of items?”), with answers aggregated
across all participants. All methods found a plurality of mid-level
related pairs (e.g., participating in the same long-term project or
activity), but NP found the most pairs with low-level (e.g., short
term task) relationships. By contrast, People Overlap found the
fewest not related pairs, which is intuitive as it is a high-precision
baseline (Table 1, top). We also find that participants’ responses to
Question 1 correlate with their responses to Question 2 (“In your
opinion, how related is this pair of items?”), as demonstrated by
Figure 5. In particular, across all participants, there appeared to
be a strong consensus that short-term tasks corresponded to the
strongest relations between entities, with low-level related pairs of
entities receiving 3.579 ± 0.82 points (out of 4) for Question 2, on
average. This correlation suggests that while individuals may have
interpreted the notion of “activity” in different ways, their ratings
for Questions 1 and 2 were consistent.

Overall, our results demonstrate the strengths of our graph-
based representations over several strong baselines. In particular,
while there may not be a “one-size-fits-all“ approach to activity
discovery, we find that our representations perform well for people
with many ongoing activities, e.g., senior-level employees. Future
work could further investigate how professional roles correlate
with individuals’ perceptions of, and participation in, activities.

5 EXTRINSIC EVALUATION
To complement our small-scale intrinsic evaluation, we conduct ad-
ditional experiments on a large public email dataset to demonstrate
the versatility of our unsupervised representations.

5.1 Data
We use the Avocado email dataset3, which comprises the inboxes of
several hundred employees of a now-defunct IT company referred
to as Avocado. We filter each inbox following the processing de-
scribed in § 4.1. From each filtered inbox we extract a graph consist-
ing of Email, Contact, and File entities. We define the Contact-Email
and Email-Email relations the same way as in § 4.1.2, and define
an Email-File relation that connects emails to their attachments.
Table 3 provides aggregate statistics of all personal webs. Follow-
ing our findings in § 4.3 on role-based differences of individuals’
activities, we stratify our dataset by size, roughly along classes
of professional roles (e.g., worker vs middle management vs offi-
cer) [19]: Small inboxes have 200–1 000 nodes in their respective
graphs, Medium have 1 000–10 000, and Large have ≥10 000.
3https://catalog.ldc.upenn.edu/LDC2015T03

Table 3: Aggregates from the Avocado inboxes, stratified by
size, after filtering and preprocessing following § 4.1. All per-
sonal web statistics are medians.

Personal web Entity types
# nodes # edges # emails # contacts # files

Small (n = 45) 501 1024 373 39 71
Medium (n = 76) 2862 6160 2 414 135 335

Large (n = 7) 12 759 37 119 10 755 303 1 457

5.2 Task definition
Following prior work in activity modeling [25], we use an email
recipient recommendation task to evaluate the downstream utility
of our graph-based representations.

5.2.1 Setup. Per employee in the Avocado dataset, we construct
a test set consisting of the last 8 months of emails from his or her
inbox. We retain only the first email per email thread. For each test
email, we remove the last recipient on the To line, following the
setup in [25]. We discard emails with fewer than two recipients and
emails whose last recipient was never seen in the training set. For
the graph-based methods, we construct a graph given the missing
edges between emails and contacts, and learn the respective model
over the partial graph. At test time, given an email with the last
recipient missing, each approach creates a ranked list of candidate
recipients r ′, excluding the test email’s sender s and observed re-
cipients r . For the methods that represent entities as vectors, we
return the candidate recipients r ′ in order of increasing Euclidean
distance from the test email’s vector representation. Following [25],
our metrics of choice are hits@k for k ∈ {1, 2}, which quantifies
the fraction of predictions where the correct recipient is ranked in
the top k results, and mean reciprocal rank (MRR).

5.2.2 Methods compared. We learn our graph-based representa-
tions with the following variants:

• NP: Using the same approach as § 4.2.4, we vary λ ∈ {10−1, 100, 102}.
• LSA: Same as § 4.2.4, with λ = 102.
• LDA:We decompose the document-termmatrixwith Latent Dirich-
let Allocation (LDA [3]) before propagation. We set λ = 102 and
the number of latent topics to 10.

We compare to the following baselines:

• Random: We rank the recipients r ′ in random order.
• Frequent Recipients: We rank recipients r ′ by P(r ′ = u ′) for
all people u ′ observed in the inbox.

• Conditioned On Sender: Similar to Frequent Recipients, but
conditioned on sender s , e.g. P(r ′ = u ′ |s).

• Average NP:We represent each email as a noun-phrase frequency
vector and each candidate recipientu ′ as the average of all vectors
representing emails she has sent or received.

• node2vec: We report the best node2vec performer, as described
in § 4.2.4, on a grid search over the walk length l ∈ {10, 80}, in-out
parameter q ∈ {1, 2}, and embedding dimension d ∈ {32, 128}.
All other parameters are set to their defaults.

https://catalog.ldc.upenn.edu/LDC2015T03


(a) Average time in seconds to train our NP
and LSA representations offline versus of-
fline node2vec as the graph size increases,
measured by the number of edges.

(b) Log-scale training time for online and
offline NP in seconds per edge, averaged
across all inboxes of each size. Average ef-
ficiency gain in parentheses.

(c) Mean square error of a set of static NP
representations learned once and not up-
dated as new edges arrive over the course
of a year for aMedium Avocado graph.

Figure 6: Offline and online learning of entity representations on the Avocado dataset.

Table 4: Performance in the recipient recommendation task
averaged across all Avocado inboxes (Table 3). Top per-
former(s) per metric shaded. ▲: Significant over all methods
not marked with † for a two-sided t-test at p < 0.01.

Hits@1 Hits@2 MRR

Random 0.019 ± 0.023 0.038 ± 0.040 0.081 ± 0.060
Freq. Recipients 0.107 ± 0.106 0.184 ± 0.136 0.229 ± 0.105
Cond. On Sender 0.143 ± 0.094† 0.247 ± 0.113▲ 0.282 ± 0.090†

Average NP 0.128 ± 0.088 0.209 ± 0.119 0.259 ± 0.102
node2vec 0.062 ± 0.072 0.092 ± 0.108 0.126 ± 0.114

Ours-NP, λ = 10−1 0.111 ± 0.059 0.182 ± 0.096 0.225 ± 0.082
Ours-NP, λ = 100 0.158 ± 0.084▲ 0.247 ± 0.105▲ 0.290 ± 0.089▲

Ours-NP, λ = 102 0.143 ± 0.085† 0.225 ± 0.112† 0.267 ± 0.093†
Ours-LSA 0.110 ± 0.093 0.180 ± 0.126 0.224 ± 0.111
Ours-LDA 0.082 ± 0.080 0.141 ± 0.123 0.189 ± 0.111

5.3 Results and discussion
As shown by Table 4, our graph-based representations outperform
or tie all baselines, suggesting their versatility in activity-centric
tasks for which they are not directly optimized. Specifically, our
NP representations with λ = 100 perform best on average across
all Avocado inboxes, tied with the Conditioned On Sender base-
line for Hits@1 but otherwise around 1 percentage point or higher
than the best baseline. Our NP representations outperform our LSA
representations by a significant margin in the recipient recommen-
dation task. As demonstrated in § 4.3, our NP representations are
best at identifying strongly-related pairs of entities (Table 1, bot-
tom), which we hypothesize may be most useful for email recipient
recommendation. Interestingly, we find that node2vec performs
poorly, which suggests that it is ill-suited to small personal infor-
mation collections. We hypothesize that its use of random walks
may introduce spurious relations between entities in these graphs.

These results also offer insight into the effects of constructing
graphs from personal information collections, which is a key design
choice of this work. For example, a larger value of the regularization
hyperparameter λ translates into more similar entity representa-
tions for entities that are closely connected in the graph. In the
context of recipient recommendation, this corresponds to people
who co-occur often on emails, leading to better prediction per-
formance. Moreover, our Average NP baseline, which represents
each person as an average noun phrase frequency vector, can be

seen as a non-graph-based version of our NP representation. Our
NP representations at λ = 100 outperform it significantly, suggest-
ing that explicitly utilizing the underlying graph structure of the
data may capture more information than pooling (e.g., averaging,
concatenating) document vectors.

6 SCALABILITY EVALUATION
Finally, we examine how model training scales in both offline and
online settings. All experiments were run on a single personal
laptop with an Intel i7 1.90GHz processor and 16GB RAM.

6.1 Offline setting
We compare the efficiency of offline inference with our NP and LSA
variants versus node2vec. We randomly sample one Avocado inbox
of each size (Table 3) and train NP, LSA, and node2vec five times
over each inbox, reporting the average training time in seconds in
Figure 6a. We find that learning our NP representations is consis-
tently faster than training node2vec (between 3× to 8×) since the
latter requires computing expensive randomwalks across the graph
in order to generate context for each node. Our LSA variant is even
more efficient, up to 102× faster than NP, and up to 295× faster than
node2vec, running in only a few seconds on a graph of 70k edges.
This is because taking the rank-r SVD, which is O(r2n) for n nodes
in the graph [15], results in a constant number of (latent) attributes
r being propagated across the graph. For a graph ofm edges, the
overall complexity of the LSA variant is O(r2n + rm) = O(m) for a
constant r ≪ n < m.

6.2 Online setting
We next measure the difference between online and offline model
inference. Recall from § 3.3.2 that our LSA variant is not eligible
for incremental training because the SVD of the document-term
matrix must be recomputed from scratch each time new data arrive,
so we only experiment with the NP representations here. Figure 6b
reports the average number of seconds per edge processed, and the
average efficiency gain, on all Avocado corpora stratified by size (as
detailed earlier in Table 3), for our offline- and online-learned NP
representations. Online NP, which updates representations incre-
mentally per new edge, is up to 470× faster than offline NP, taking
on average less than 1 second per edge on the Large corpora.



Figure 6c demonstrates how the error of a single, offline-learned
set of NP representations increases as new edges arrive over time for
a randomly sampled Medium Avocado inbox. Here we measure the
difference between the batch-learned offline representations and
the most current, online-learned version with mean square error.
Evidently the error increases approximately linearly as edges arrive,
suggesting that for individuals with a high volume of incoming
data (e.g., upper-level roles like managers, executives), updating the
representations of their personal information objects in an online
manner becomes more important.

7 DISCUSSION AND CONCLUSION
This paper proposes a graph-based approach to learning repre-
sentations of items in the personal web, and presents an efficient
online method for updating those representations as new data ar-
rive. We demonstrate that our representations capture personal
notions of activity-based relatedness, and support the downstream
task of email recipient prediction. While our work is a step toward
higher-level machine understanding of individuals’ activities, many
future research directions remain. For example, due to resource
constraints, our human judgment task is limited by its number
of participants and the number of pairs rated by each participant.
Further means of human-centric evaluation include surveys to char-
acterize people’s perspectives toward activities, and longitudinal
studies to capture performance via implicit feedback among a larger
participant pool in an online setting (e.g., [31, 32]).

Another direction for future work is that of developing intrinsic
evaluation tasks beyond the absolute graded ratings used in our
study. For example, it has been shown that people find it easier to
provide A/B preference judgments than absolute judgments [5]. In
our context, such relative judgments would alleviate some issues
with varying interpretations of the rating task. Future work could
also develop subjective evaluationmetrics tailored to the rating task,
for example the “usefulness” or “surprisingness” (c.f. [36]) of a pair
of related entities. Finally, we believe that our work demonstrates
the promise of graph-based approaches toward activity discovery.
We hope that future work in this direction will build upon the
foundations we provide, ultimately toward artificial intelligence
that helps people better structure and organize their lives.
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