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Abstract— It is well-known that the Kalman filter for
simultaneous localization and mapping (SLAM) converges to
a fully correlated map in the limit of infinite time and data [1].
However, the rate of convergence of the map has a strong
dependence on the order of the observations. We show that
conventional exploration algorithms for collecting map data
are sub-optimal in both the objective function and choice
of optimization procedure. We show that optimizing the a-
optimal information measure results in a more accurate map
than existing approaches, using a greedy, closed-loop strategy.
Secondly, we demonstrate that by restricting the planning to
an appropriate policy class, we can tractably find non-greedy,
global planning trajectories that produce more accurate maps,
explicitly planning to close loops even in open-loop scenarios.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the

problem of how to build environmental models or maps

from sensor data collected from a moving robot. SLAM

is considered to be one of the cornerstones of autonomous

mobile robot navigation [2], but is technically challenging

because the robot position and the world features must be

estimated simultaneously from noisy sensor data. Recent

research has resulted in substantial progress in autonomous

map-building; there are now a number of systems that can

reliably build many kinds of environmental models [1], [2],

[3], [4].

There have also been a number of recent attempts to

automate the exploration policy for gathering data to be

assembled into a map; these algorithms have in particular

focused on maximizing expected information gain [5], [6],

[7] whenever possible. However, existing approaches are

limited in two senses: the exploration trajectory is typically

based on purely local optimization, and the traditional

measure of information gain does not lead to the most

accurate maps.

In this paper, we describe a motion planning algorithm

for SLAM that computes the multi-step trajectory that

maximally reduces the error of the map. We use the

notion of mean uncertainty, or a-optimality [8], as our

objective function. We then describe a breadth-first search

algorithm for computing global exploration trajectories.

The information gain is computed not for a given point, but

by integrating observations along the trajectory to the point.

We can prune the search space of trajectories aggressively

by restricting ourselves to the class of trajectories that do

not contain cycles, leading to a computationally tractable

search for a sequence of actions. This results in one of the

first algorithms that allows exploration for exploiting global

information along trajectories, rather than exploiting local

information gain.

It must be emphasized that our use of the a-optimal

objective function does not necessarily lead to an optimal

exploration trajectory as we do not exhaustively search

the space of all trajectories. The goal of this paper is to

demonstrate that the a-optimal, global planning procedure

leads to measurably more accurate maps than conventional

information measures with local policies. In particular, we

show that the a-optimal measure generates more accurate

maps, even when following a greedy, local search strategy.

In addition, we show that our global planning strategy ex-

plicitly plans to close loops when necessary, even in open-

loop planning scenarios, resulting in faster convergence to

the correct map.

II. SLAM

We assume that we have a quasi-holonomic robot oper-

ating in a planar environment. Without loss of generality,

we assume the robot is equipped with an idealized sensor

that can sense the range and bearing of any number of

features in the plane1. The robot issues controls at each

time t, which describe relative translational and rotational

displacement of the robot: Ut = (∆d,∆θ). The sensor

measurements are a sequence of range and bearing mea-

surements: zt = (r1, b1, r2, b2, . . . rn, bn) for n features of

the environment. The full state space ξ is composed of

the robot pose (x, y, θ) and the positions of all n features

(x1, y1, x2, y2, . . . , xn, yn), that is,

ξ = (x, y, θ, x1, y1, x2, y2, . . . , xn, yn). (1)

The SLAM problem is to estimate the posterior distribution

over ξ from the history of the controls issued by the robot

and the sensor measurements received:

p(ξ|zt, ut, zt−1, ut−1, . . . , z0, u0) (2)

Given probabilistic models of the motion and sensors,

there are a spectrum of competing SLAM algorithms

for estimating the posterior distribution over ξ. Different

representations of the map posterior trade off computational

complexity for representational power and approximation

1This assumption ensures that information gain is strictly monotonic.
Allowing previously-unsensed map features to be added to the process is
perfectly acceptable, but will require additional book-keeping during the
planning process when we add sense new features. We defer this question
for future work.
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Figure 1. Three example uncertainty ellipses. Notice that we can drive the total volume of the uncertainty estimate close to 0 by shrinking only a
single eigenvalue of the matrix covariance. In contrast, the trace preserves more of the overall uncertainty.

quality. In this paper we will focus on Kalman filter-

based [9] approaches for development of our active explo-

ration algorithm. The derivation of the extended Kalman

filter (EKF) for SLAM has been described elsewhere [10];

it suffices to say that the EKF computes the posterior

distribution of map and robot position at each time step

through a linearization of the motion prediction and sensor

measurement models, assuming that the motion and sensor

uncertainty terms can be characterized as Gaussian. The

assumptions of linearity and Gaussian noise allow the EKF

model to maintain an approximation of the estimated pos-

terior probability distribution over ξ as a Gaussian, that is,

p(ξ) = N(µ,Ψ). While there are some known limitations

to this approach, maintaining the explicit covariance matrix

Ψ in the Kalman filter gives us principled ways to reason

about how uncertain the distribution is about the model,

and how the model estimate can be improved by different

actions.

III. ACTIVE EXPLORATION

Although the EKF allows us to build an accurate map

from a stream of sensor data, it does not describe ex-

ploration strategies for gathering that data to build the

most precise map. The question of how best to gather

data is really the problem of selecting new measurements

that are maximally informative about our model, which in

turn raises the question of how to measure information.

One popular measure of information gain of probability

distributions is relative entropy [11]. If we define the

entropy of a distribution as

H(p(ξ)) =

∫

Ξ

p(ξ) log p(ξ), (3)

then the loss in information after action a (as acting without

sensing typically introduces uncertainty) is

∆I(a) = (H(p(ξ|a)) − H(p(ξ))) . (4)

After each action we then receive an observation; we

cannot predict this observation exactly but we do know the

distribution of observations, which allows us to compute

the expected information gain. The complete change in

information from time t to t + 1 is then

∆It+1|t = (Ez [H(p(ξ|a, z))] − H(p(ξ))) . (5)

We can compute the relative change in entropy for a

Gaussian distribution of d variables with mean µ directly

from the covariance matrix Ψ, since

p(ξ) = k exp

{

−
1

2
(∆ξ)T Ψ−1(∆ξ)

}

(6)

⇒ H(p(ξ)) =
d

2
(1 + log 2π) +

1

2
log det(Ψ) (7)

⇒ ∆It+1|t ∝ Ez [log det(Ψt+1)] − log det(Ψt) (8)

where k = (2π)−d/2 det(Ψ)−1/2 and ∆ξ = ξ − µ.

Consequently, maximizing information gain under the

measure of relative entropy is equivalent to minimizing the

determinant of the variance of the posterior distribution

pt(ξ).

D-Optimality

Using relative entropy, and hence variance minimization,

as an objective function is equivalent to the d-optimality

criterion from experimental design theory [8]. Geomet-

rically, the determinant is a measure of (although not

equal to) the volume of the hyperellipsoid that bounds

the uncertainty of the parameter estimate provided by the

EKF. By minimizing the determinant, we are minimizing

the volume of the model uncertainty. What a d-optimal

exploration strategy fails to account for is an obvious

property of the determinant; recall that the determinant of

a square matrix is the product of its eigenvalues:

det(Ψt) =

n
∏

i=1

λi (9)

where the λi are the eigenvalues of Ψt. We can drive the

determinant of the entire covariance matrix to 0 by reducing

a single eigenvalue to 0, making the matrix singular; a

trivial way to do so is to reduce the variance of a single

feature. The real problem here is that while the probability

distribution of our data can shrink rapidly in some dimen-

sions, in other dimensions we gain no information; using

entropy as an information measure does not capture this

phenomenon. Figure 1 illustrates this potential failure of the

d-optimal objective function. By reducing the magnitude of

a single eigenvalue, we see in this figure that the volume

of the ellipse shrinks rapidly.

A-Optimality

A better measure of map quality can be found by viewing

the EKF as a procedure to maximize the log-likelihood of

the data under the assumption of Gaussian error, which

is equivalent to minimizing the squared error between the
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Figure 2. Map accuracy as a function of time for strategies optimizing
an a-optimal and a d-optimal measure of uncertainty using a closed-loop,
greedy strategy..

data and the model parameters. Rather than using the d-

optimal measure to minimize overall variance, we can use

the a-optimal information measure to minimize the mean

squared error [8] of the model. Whereas the d-optimal

information measure uses the product of the eigenvalues,

the a-optimal information measure uses the sum (which is

proportional to the mean for a fixed number of landmarks)

of the eigenvalues, given by trace of the matrix:

I(Ψt) =
n

∑

i=1

λi = tr(Ψt) (10)

⇒ ∆It+1|t = Ez [tr(Ψt+1)] − tr(Ψt) (11)

Minimizing the mean of the eigenvalues allows us to

minimize the “average” uncertainty of the model, which we

will see below gives a more accurate map than the variance-

based approach. The trace is sometimes considered to be a

poor estimate of information of a multi-variate Gaussian,

because unlike the determinant, the minimum of the trace is

not invariant to different scaling of the parameters. Also,

unlike the determinant, the trace may not be physically

meaningful when the quantities are in different units; it is

not clear how to compute the mean of different uncertain-

ties such as location, velocity and acceleration. However,

for the SLAM problem, all variables represent spatial

locations except for the orientation of the robot, and so

long as we take care to use the same units for representing

all map features and vehicle parameters, we are not really

subject to scaling problems. One approach to handling the

different units of orientation may be to marginalize out

the orientation; in practice the approximation introduced

by including the orientation in the trace is minimal so

long as the orientation is represented in reasonable units

(i.e., radians rather than arc-seconds). The key point is

that despite the vulnerability to scaling that could result

from poor representations of the covariance, the a-optimal

measure still does a better job of capturing the overall

uncertainty of the model, resulting in more accurate maps.

Figure 2 illustrates the improvement from an a-optimal

measure compared to a d-optimal measure for greedy local

search. The plot depicts the mean error between twenty

map feature estimates and their ground truth positions

as a function of time. For both curves, the same map

and optimization strategy are employed (described in the

next section); only the measures that are optimized differ.

While both measures generally demonstrate improvements

over time, the strategy employing an a-optimal measure

produces a significantly more accurate map.

It is worth noting that many exploration algorithms

attempt to deal with the problems inherent in conventional

variance minimization differently, by ignoring correlations

between most parameters of the EKF (in other words,

assuming an ad hoc independence between map features).

This approximation allows the determinant of Ψ to be

computed as

det Ψ ≈ det Ψv +

n
∑

i=1

Ψi, (12)

where Ψv is the vehicle covariance, a sub-block on the

diagonal of Ψ, and Ψi are the map feature covariances,

also sub-blocks on the diagonal of Ψ. This approximation

will tend to under-estimate the uncertainty of covariance

matrices by ignoring cross-correlations between map fea-

tures and between features and the vehicle position.

IV. GLOBAL PLANNING

Having addressed the problem of selecting the correct

objective function for exploration, we turn to the prob-

lem of global exploration. We will assume that we have

discretized the environment into a grid, where each grid

cell represents a specific robot position; the actions in the

planning problem are motions from grid cell to grid cell.

The planning problem is how to choose the sequence of

discrete positions through the environment that, taken to-

gether, form the maximally informative trajectory. Without

loss of generality, we will assume a quasi-holonomic robot

in order to avoid explicitly planning the orientation of the

robot, being mindful that tracking the robot’s orientation

is essential for the actual mapping problem. Again without

loss of generality we will ignore the problem of obstacles

in the environment, since obstacles can be easily integrated

into the planning problem as grid states that cannot be

included in any trajectory.

Current exploration approaches [5], [6], [7] have used

purely local, greedy approaches for choosing the single best

next action that maximizes the expected information gain,

as in

π(ξ,Ψ) = argmin
a

E[tr(Ψ)]. (13)

However, figure 3 shows the disadvantage to the standard

greedy approach. The true map is shown in figure 3(a),

and the greedy trajectory is shown in figure 3(b). We see

the robot criss-crosses from corner to corner, resulting in

poor estimation of the map features between the corners.

Figure 3(c) shows an example trajectory from our global

planning algorithm, that loops around all map features and

results in a more accurate map. In particular, the global

planning algorithm appears to deliberately “close the loop”,

that is, revisit already-explored areas in order to improve

the overall map estimate. The map feature uncertainty

ellipses are shown in both figures, and the greedy trajec-

tory clearly results in larger ellipses and therefore higher

uncertainty.



(a) Initial Map (b) Greedy Trajectory (c) Global Trajectory

Figure 3. (a) An exploration problem, with a set of features arranged in a ring around the edge of the environment. (b) The trajectory from a greedy
exploration algorithm, computing the single position in the environment with maximum expected information gain, and moving to that position. (c)
The trajectory from our global planning algorithm; notice the deliberate loop-closing.

The difficulty with planning a sequence of actions

{a0, a1, . . . at}, so that

π(ξ,Ψ) = argmin
a0,a1,...at

tr(Ψt), (14)

is that the computational cost incurred can be large. In

trying to choose the optimal sequence of actions, we are

in reality trying to compute the optimal trajectory through

the space of expected EKF estimates

π(ξ,Ψ) = argmin
(ξ0,Ψ0),(ξ1,Ψ1),...(ξt,Ψt)

tr(Ψt). (15)

Each of these EKF estimates is a belief over map feature

locations and robot positions. Solving for the optimal

sequence of actions exactly is therefore an instance of a

Partially Observable Markov Decision Process (POMDP),

which typically involves enormous computational cost to

solve any but the smallest toy problems. Good approxima-

tion methods have been described recently to solve many

POMDPs approximately [12], [13], but the exploration

problem has structure that allows even greater computa-

tional efficiency.

A. Pruned Breadth-First Search

Our approach to the planning problem is to use breadth-

first search over all robot positions to search for the

expected sequence of EKF estimates that lead to the max-

imum information gain (A∗ search would be even better,

but the choice of a good heuristic is an open question).

We will take as the space of poses the discretized grid of

the environment, and the space of actions as motions to the

eight-connected neighborhood of each grid cell; in general,

this search would be exponential in both the number of

states and search depth, which for a reasonably sized

environment will be unacceptable. However, by pruning

the breadth-first search carefully, we can avoid some of

the exponential cost.

The two key insights of our planning algorithm are as

follows.

• For the purposes of planning, we can express the state

of the EKF as the mean state of the robot and the trace:

(ξ,Ψ) ≈ (x, y, tr(Ψ)). (16)

This is an approximation, but by discretizing the EKF

estimate of the robot position onto the grid of our

action space, we can represent the state in the search

as a vector of length 3, rather than a complete mean

and covariance. Note that this planning approximation

is very reminiscent of the Coastal Navigation heuristic

used for POMDP-style navigation [14]. The major dif-

ferences are that we are using the a-optimal heuristic

representation, and we are using search rather than

dynamic programming.

• We will limit the search to trajectories that do not

contain repeated states; that is, trajectories that do not

self-intersect in the discretization. This may seem like

an overly restrictive policy class, but the advantage is

that it allows us to prune the search tree substantially.

Consider a search tree that has already expanded a

node with state (x, y, I), and is about to expand a

node with state (x, y, I ′); these two nodes correspond

to two trajectories t and t′ that will arrive at the same

robot location but with different expected information

gain along the trajectories. If E[tr(I)] < E[tr(I ′)],
then the only way the trajectory t′ can do better than

trajectory t, gaining more information starting from

the current state of (x, y, I ′), is to return to (x, y)
with an information measure I ′′ such that E[tr(I ′′)] <
E[tr(I)]. By explicitly disallowing such trajectories,

we can prune away much of the search space.

The restricted policy class effectively converts the search

from a 3-D process into a 2-D process. Rather than rep-

resenting, for each (x, y), all achievable information states

tr(Ψ), we need only represent the best information state

tr(Ψ)∗. We can think of the state of the search process as

an “information surface” over the space of robot positions,

where the height of the surface is given by tr(Ψ)∗, the best

information state found for a trajectory passing through this

state.

We embed the search tree in the information surface

by adding to each position (x, y) in the grid a “parent

pointer”, φ(x, y) = (x′, y′), that indicates which neighbor-

ing position (x′, y′) in the grid contributed to the current

best estimate tr(Ψ)∗ at (x, y). During our search, we only

update the information gain at the current pose (x, y) if

the information gain estimate is improved and we can



follow the sequence of parent pointers back to the robot’s

start pose (xr, yr) without encountering pose (x, y) again.

Finally, we use a priority queue keyed on the current

entropy of the distribution to minimize repeated iteration

over all robot poses. The full algorithm is given in Table I.

1) Initialize all I(x, y) = ∞
2) Push current {x, y, ξ, Ψ} onto Q, with priority p = tr(Ψ)
3) While Q not empty

a) Pop {x, y, ξ, Ψ}
b) For each neighbor (x′, y′) of (x, y):

i) Compute ∆I from equation (11)
ii) If I(x, y) + ∆I < I(x′, y′) and

(x′, y′) /∈{φ(x, y), φ(φ(x, y)),. . . ,(xr, yr)} then

A) I(x′, y′) = I(x, y) + ∆I
B) Push {x′, y′, ξ′, Ψ′} onto Q

with priority p = I(x′, y′)
C) Set φ(x′, y′) = (x, y)

4) (x, y) = argmin(x,y) I(x, y)
5) while (x, y) 6= (xr, yr)

a) (x′y′) = (x, y)
b) (x, y) = φ(x, y)

6) Move to (x′, y′)

Table I

THE COMPLETE ALGORITHM FOR FINDING THE TRAJECTORY TO THE

GLOBAL MAXIMUM IN INFORMATION GAIN.

It should be noted that our planning algorithm requires

an initial state estimate for all of the landmarks. In practice

we have the robot take a small number of initial observa-

tions before computing the global plan. One outstanding

issue is the question of how often the global plan should be

recomputed to close the loop around sensor data. Given the

computational cost, it is desirable to re-plan as infrequently

as possible. The drawback of not re-planning is that as the

actual state estimate drifts from the initial estimate, the

computed plan becomes sub-optimal. For this work, we

compute an initial global plan and recompute only when

the robot has visited all of the states in the plan once. The

plan is then recomputed based on the new state estimate.

Convergence of the algorithm is guaranteed by the fact

that no state can be repeated on any given trajectory, and

the fact that the information gain at each point (x, y)
increases monotonically as more informative trajectories

are expanded; trajectories with less information are pruned

immediately. The complexity of this algorithm for s states

is a result of O(s2) state updates, and O(m) iterations

for each state to follow the parent pointers, checking each

trajectory of maximum-length m for loops. If we disallow

trajectories that re-visit states, m is bounded above by

s, and the complexity is therefore O(s3), hence cubic in

the number states. In practice the running time is much

less than cubic, and the bound can be further reduced by

shortening the planning horizon m.

V. EXPERIMENTAL COMPARISON

We tested three open-loop exploration algorithms in a

simulated environment, looking at example trajectories and

a quantitative comparison of each algorithm’s performance.

The three algorithms are as follows:

• Random exploration

• Greedy exploration: The robot drives to the single

location that is maximally informative about the envi-

ronment as developed by Feder et al. [5], [6].

• Breadth-first Search: This is the algorithm summa-

rized in Table I, to compute the trajectory with the

highest terminal information gain.

There are 20 map features distributed randomly about a

square environment of size 200m × 200m and the robot

generally moves in steps of 1m. For these simulated

experiments we allow the sensor to have infinite range;

we take this approach because none of the algorithms

under consideration emphasize coverage explicitly, a topic

for future investigation. We employ a sensor model in

which the variance of a range measurement is proportional

to the distance to the feature being measured, and the

standard deviation of a bearing measurement is a constant

five degrees. As such, measurements to distant features are

noisier than measurements to nearby features. We assume

that at the outset the robot knows how many features

there are, but of course not where they are. In all cases,

the algorithm replans (e.g., computes a new information

surface) whenever it reaches the intended target destination.

Figure 4 shows quantitative comparisons of the perfor-

mance of the three algorithms, over trajectories of length

1000 steps. At the top is the trace of the covariance matrix.

Notice that the Breadth-First Search algorithm converges

the fastest of all the algorithms. Comparing the accuracy

of the map with ground truth in terms of the log average L2

norm between the estimated feature positions and their true

positions, we see that the Breadth-First Search algorithm

had significantly higher accuracy than any other approach2.

It is worth noting that if these experiments were continued

out to an infinite number of time steps, the entropy of each

algorithm would converge to the same global minimum, as

would the map accuracies. The idea is that the Breadth-

First algorithm should be accurate sooner.

VI. DISCUSSION

We have described an approach for active exploration

on mobile robots that uses the a-optimal measure of

information gain and a global optimization strategy. The

a-optimal measure allowed a local, closed-loop motion

strategy to outperform the existing d-optimal information

measure, learning a more accurate map in the same amount

of time. Additionally, our global optimization strategy was

able to build a more accurate map using an open-loop

exploration strategy.

Again, the goal of this paper was not to demonstrate

a provably optimal algorithm for exploration, but show

a more appropriate choice of objective and to show that

global exploration strategies can be found tractably. The

computational cost of global exploration strategies is still

admittedly high, and re-planning after every observation

is difficult (but not impossible). Our experimental results

2It is possible to introduce arbitrary error in the L2 norm between a
perfect map and ground truth by rotating the map about the start pose
before comparison. The error reported here for all algorithms follows a
correction procedure to rotate the map back to the best orientation possible
for minimizing error.
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Figure 4. Performance results for the 3 algorithms: at the top is the
convergence of the posterior trace with time, and on the bottom is the log
average L2 error between the true and estimated feature positions.

demonstrate that re-planning after every observation is

clearly not necessary, as our planner performed well even

in the unreasonably pessimistic case of an open-loop plan.

We will address the problem of when to replan in future

work.

One advantage to our approach we have not explored

is that measuring information gain using the a-optimal

measure does not depend on the number of map features

in the world when a finite number of map features are

visible; although the trace obviously does depend on the

size of the covariance, computing changes to the trace,

and therefore the information gain does not. Given the

recent development of a number of constant-time SLAM

algorithms, such as CTS [3] and the Sparse Extended

Information Filter [4], an exploration algorithm that also

avoids any computational complexity dependence on the

number of map features will be highly applicable.

There are two additional limitations to the algorithm

which we plan to address in future work. Firstly, our use of

properties of the covariance matrix has a strong dependence

on the Kalman filter-based SLAM model. However, many

techniques that build good metric maps are not based on

point features but rather on scans of range data, images,

etc. These algorithms are still probabilistic in nature; if we

can capture an a-optimal information measure over these

representations, we should be able to extend our technique

easily.

Secondly, our approach is an approximation in that we

are using a restricted class of policies, that is, discretized

policies that do not self-intersect. This approximation is for

purely computational reasons; we could easily allow self-

intersecting policies by no longer pruning trajectories that

have repeated states. Some of the most useful exploration

trajectories, however, are likely to be very loopy. Further

analysis is required to assess the computational penalty this

will incur. The restriction to discretized policies can be re-

laxed to include continuous-state policies by using a policy

search algorithm to improve the discrete-state policy. We

are also currently investigating alternative discretizations

based on local maxima in the greedy search space.
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