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Abstract— We present a method for learning a set of models
of visual features which are invariant to scale and translation
in the image domain. The models are constructed by first
applying the Scale-Invariant Feature Transform (SIFT) to a
set of training images, and matching the extracted features
across the images, followed by learning the pose-dependent
behavior of the features. The modeling process avoids as-
sumptions with respect to scene and imaging geometry, but
rather learns the direct mapping from camera pose to feature
observation. Such models are useful for applications to robotic
tasks, such as localization, as well as visualization tasks. We
present the model learning framework, and experimental
results illustrating the success of the method for learning
models that are useful for robot localization.

I. INTRODUCTION

This paper addresses the problem of learning to model
image-domain features that are useful for applications to
robotic tasks, such as image-based pose estimation. The
inferred models capture the relationship between imaging
and scene geometry without explicit geometric models,
thereby enabling the use of arbitrary imaging devices (such
as swapping an omnidirectional camera for a pinhole-like
camera), and operation in natural environments, where
many scene features might not correspond to localized
three-dimensional points (such as salient points caused
by occlusion boundaries or specularities). The models
are constructed in a generative framework, using feature
observations from known poses to compute a generating
function that enables the prediction of feature behavior
from arbitrary viewpoints. The models are also evaluated
in order to estimate model misfit and sensor noise, enabling
the probabilistic estimate of the likelihood of a feature
observation, given a pose. This likelihood estimate is a
useful tool for a variety of inference tasks, such as camera
pose estimation. This paper will demonstrate the feature
modeling framework and apply it to the problem of global
robot pose estimation, providing experimental results that
validate the approach.

Recent work in a variety of vision-based inference
problems, such as object recognition and robot localization,
has demonstrated that inferences based on local image
features, as opposed to globally derived features, such as
principal components analysis [1], [2] can provide robust-
ness to a variety of factors, such as illumination variation,
dynamic environments, and sensor noise [3], [4]. Other
work has provided psychophysical evidence for feature-
based recognition, as well as support for improvements
in computational efficiency [5]. Our work is motivated by

Fig. 1. a) Detected SIFT features in an image. Each arrow corresponds
to a detected feature, with scale corresponding to arrow length, and
orientation corresponding to arrow direction. b) Modeled SIFT features
rendered from a novel viewpoint.

these ideas and specifically aims for robust behavior in
dynamic environments.

The main contribution of this paper is the application
of the Visual Map framework developed in [6] to the
problem of learning models of scale and rotationally invari-
ant features. The modeled features demonstrate improved
robustness for unambiguous recognition and tracking, and
greater versatility for applications to camera pose estima-
tion and visualization tasks. A key component of feature
modeling is the reliable acquisition of training observations
of individual features. In the previous work, features were
initially detected using an edge-density operator. Such fea-
tures tend to be poorly localized in the image, and subject
to instabilities as a function of camera pose. The result is
that they are difficult to track reliably and subject to outlier
matches, resulting in degradations in the inferred models.



In this paper, the Scale-Invariant Feature Transform (SIFT),
developed by Lowe [7] is employed (Figure 1 a). SIFT
features provide enhanced stability against variations due
to pose and illumination, as well as viewpoint-invariant
descriptors for matching in the presence of changes in scale
and rotation in the image plane. In addition, SIFT features
enable the feature learning framework to model a wider
variety of feature properties– specifically the characteristic
scale and orientation of the feature– in addition to those
that have been previously modeled, such as image posi-
tion and local appearance (Figure 1b). The result is that
enhanced robustness and versatility can be obtained, both
in the modeling stage, and when applying the models to
inference problems.

The basic problem of feature modeling involves comput-
ing a feature observation likelihood, conditioned on camera
pose. That is, given a pose x, what is the probability of
observation z occurring, p(z|x)? The ability to answer this
question enables an agent to perform a variety of inference
problems, such as robot pose estimation. Specifically, given
an observation, the probability distribution over robot poses
can be constructed from Bayes’ Rule:

p(x|z) =
p(z|x)p(x)

p(z)
. (1)

where p(x) is the a priori distribution over robot poses,
and p(z) is independent of x, and hence treated as a
normalizing constant.

This paper takes a generative approach to feature mod-
eling. Feature observations are assumed to be the noisy
outputs from a generating function F (·) that maps the
relationship between pose and feature. The problem of
modeling a feature involves constructing a generating func-
tion F̂ (·) that approximates F (·):

z∗ = F̂ (x) (2)

and using z∗ as a maximum likelihood estimate of the
observation given the pose x. The probability distribution
p(z|x) is approximated as a Gaussian distribution centered
at z∗, and with covariance R, determined by a measure
of model fit. The details of this model will be described
in later sections. Clearly, feature observations are also
functions of illumination, scene and camera geometry and
sensor characteristics. We assume that these quantities
are either static, and hence captured implicitly by the
generating function, or the result of noisy real-world pro-
cesses and hence captured implicitly by the Gaussian noise
model. Note that, unlike the approach taken by Se, et al.,
where SIFT features are modeled geometrically using a
stereo camera [8], this work does not compute explicit
geometric models of the extracted features. Similarly, this
approach differentiates our work from structure from mo-
tion (SFM) [9], which imposes assumptions on both the
features and the imaging geometry.

The remainder of this paper will address related work,
and introduce the feature modeling approach, including
implementation details. This will be followed by experi-

mental results illustrating the utility of feature modeling
for visualization and robot pose estimation tasks.

II. RELATED WORK

The problem of feature-based localization has been the
subject of extensive research. Early work examined triangu-
lation methods for localizing a robot in the plane using 2D
point landmarks [10], and culminated in the development
of probabilistic approaches to active localization using
the Kalman Filter and Markov chains [11], [12]. These
principles have also been applied using 3D point features
using both stereo, and pinhole camera models [8], [9], [13].
Finally, a variety of linear analysis techniques have resulted
in features that are extracted implicitly [1], [2], and local-
ization techniques using linear combinations of views [14].
Our work is similar to the earlier localization techniques
in that it applies probabilistic methods to localization from
feature observations. However, it is more similar to the
latter techniques in that feature and camera geometry are
not modeled explicitly but rather the (possibly complex)
interaction of feature and sensor is learned as a function
of pose.

This paper builds on the Visual Map framework devel-
oped in our prior work [6]. In that work, candidate features
were extracted as local maxima of edge density, and only
their positions and appearance were modeled as functions
of pose. This paper employs the SIFT feature detector,
enabling robust tracking and the additional modeling of
feature scale as a function of pose.

III. APPROACH: VISUAL MAPS

This paper takes the approach to feature modeling de-
scribed in [6], adapted somewhat to take advantage of
useful properties provided by the particular features that are
modeled. Recall that the basic problem of feature modeling
is to enable the computation of the observation likelihood
function p(z|x), by first learning a generating function F̂ (·)
that approximates F (·) for each feature, and subsequently
modeling the reliability of the learned functions, and the
noise processes that contribute to the observations.

Formally, we address the following problem:
Given:
• I , an ensemble of images of an environment, and
• X , ground truth pose information indicating the pose

of the camera from which each image was acquired.
Compute: a feature-based visual representation of the

environment by:
1) Extracting a set of visual features from I .
2) Tracking feature observations across I .
3) Modeling the generating function Fi(·) for each

tracked feature, using the ground truth pose infor-
mation X .

4) Evaluating the learned feature models for their reli-
ability.

The framework operates by automatically selecting po-
tentially useful features {fi} from a set of training images
I of the scene taken from a variety of camera poses X
(i.e. samples of the pose-space of a robot). The features are



selected using the SIFT feature detector. Once the features
are selected and tracked, using a mechanism described
below, the result is a set of observations for each feature,
as they are detected from different positions. For a given
feature fi, the modeling task then becomes one of learning
the imaging function Fi(·), parameterized by camera pose,
that gives rise to the imaged observation zi of fi according
to Equation 2. While a variety of alternative modeling
approaches exist, this work employs radial basis function
(RBF) networks as an interpolation mechanism, followed
by cross-validation for model evaluation. The advantage of
using an RBF-based approach is that no explicit assump-
tions about the nature of the features or imaging device
are made, thus enabling the modeling of a wide variety of
visual phenomena with an arbitrary imaging device.

A key point to note is that we are considering image
ensembles for which ground-truth pose information is
available. It is assumed that a mechanism is available
for accurate pose estimation during the exploratory stage
(such as assistance from a second observing robot). This
assumption can be relaxed with more sophisticated map-
building approaches, such as the utilization of expectation-
maximization [15].

IV. IMPLEMENTATION

The feature learning framework is divided into four
stages, extraction, tracking, modeling and evaluation. The
following sections will describe the details of each stage.

A. Feature Extraction

Potential features are initially extracted from the train-
ing images using the SIFT feature detector developed by
Lowe [7]. The SIFT feature detector operates by selecting
local peaks in a difference-of-Gaussian pyramid computed
from an input image. These peaks correspond to image
positions and scales which closely meet criteria for scale-
space invariance. In addition, the SIFT detector computes
a set of dominant orientations for each detected feature
point, producing a feature description that includes image
position, scale and orientation, all quantities that can vary
as a function of pose. Finally, the detector computes an
invariant feature descriptor, consisting of a 128-byte vector
sampling the local image gradient from a set of local
shifts in image position and a set of orientations. The
feature descriptor is remarkably stable for matching against
changes in orientation and scale, as the following sections
will demonstrate.

Once the set of feature points has been computed,
the local image neighborhood surrounding each point is
presumed to contain useful information, and these feature
windows, along with their positions, scales, and invariant
descriptors are returned as the output of the operator.
Figure 1 depicts the selected features from an image
as superimposed arrows over the original. The base of
each arrow corresponds to the position of the feature, the
direction of the arrow to its orientation and the length of
the arrow to its scale.

B. Feature Tracking

Feature tracking is performed incrementally, by starting
with the features in an initial training image, and matching
those against the features detected in nearby training im-
ages. The training images are inserted in order of their
distance in pose space from the centroid of the set of
training poses. As images are inserted, feature fi in the the
database is only selected for matching if it has been ob-
served from a nearby training pose. As new training images
are added, if the number of successfully matched features
in an image drops below a threshold of 0.5, the SIFT
features in that image are used to initialize new features in
the database. It should be noted that conventional feature
tracking methods, such as conditional density propagation
are dependent on time-series inputs and are not well suited
to the requirements of our problem [16].

SIFT features are matched by comparing their invariant
descriptors. The invariant descriptor it for feature fi in the
database is defined by the descriptor for the observation
that is closest in pose space to the current training pose.
The Euclidean distance D(i1, i2) = ||i1 − i2|| between
descriptors in feature space defines the quality of a match,
and matches are accepted only when they are unambiguous.
Specifically, an optimal match i∗ is accepted if, for the
feature template it,

∀ii∈zj

D(it, i∗)
D(it, ii)

< τ (3)

Therefore, a match is accepted if it is closer to the
template than the next best match by a ratio of τ . For this
work, we use τ = 0.6. Note that the adaptive selection of
the feature descriptor it as a function of pose enables the
SIFT feature to evolve somewhat over the pose space. For
tasks involving prior pose information, this descriptor can
be modeled by the feature learning framework, whereas
when no prior pose information is available, a static
exemplar descriptor is selected from the observations.

Figure 2 illustrates a feature that has been tracked
using this approach. Each thumbnail corresponds to an
observation of the feature from the position represented
by the thumbnail’s position in the Figure. Here we are
assuming a two-dimensional pose space, where the position
of the camera varies over a plane and its orientation is
fixed. The pose space is approximately 6.0m in the y-axis
and 3.0m in the x-axis. The quality of the matching is very
robust, and the feature is tracked over a wide region of the
pose space.

C. The Generative Feature Model

We now turn our attention to the problem of inferring
a generative feature model. We are interested in learning
a pose-dependent model of a scene feature, given a set of
observations of the feature from known camera positions.
We require that the model will be capable of producing
maximum-likelihood virtual observations (predictions) of
the feature from previously unvisited poses. It will also be
capable of estimating the likelihood of a new observation
p(zi|x), given the pose from which it might be observed.



(a)

Fig. 2. A set of observations of an extracted scene feature. The grid
represents an overhead view of the pose space of the camera, and feature
observations are placed at the grid intersection corresponding to the pose
where they were observed. Note that the observations capture variation
in feature appearance, scale and position. The corresponding feature in
the scene is highlighted in Figure 3.

An observation z of a feature f will be represented by
the vector

z =
[

s
u

]
(4)

where s represents the scale of the feature and u represents
the position of the feature in the image. Feature orientation
can also be readily modeled, but is not informative in the
context of the experiments presented here. In addition,
for tasks involving visualization and reconstruction, the

(a)

Fig. 3. The feature that is depicted in Figures 2 and 4, highlighted in
one of the training images.

feature vector z is augmented by the local intensity image
i, whose size is normalized by the scale parameter s. The
observation z is a vector-valued function F (·) of the pose
of the camera x. The goal is to learn an approximation F̂ (·)
of this function. In this paper, robot poses are assumed
to be vectors in a two-dimensional space x = [x y]T ∈
<2, corresponding to a camera moving through a planar
environment at a fixed, but arbitrary, orientation.

The approach to learning F (·) is to model each element
of the feature vector z ∈ <k as a linear combination of
radial basis functions (RBFs), each of which is centered at
a particular robot pose determined by the set of training
poses. Given a set of observations, a set of weights wi ∈
<k can be computed such that a linear combination of
RBF’s interpolates the observations, approximating the
function that generated the observations. Formally, given a
set of observations from known poses (zi,xi), a predicted
observation z from pose x is expressed as

z = F̂ (x) =
n∑
i

wiG(x,xi) (5)

where n is the number of training poses, and an exponen-
tially decaying RBF G(·, ·) is used:

G(x,xc) = exp(−||x− xc||2

2σ2
) (6)

where xc represents the center of the RBF, and the response
of the RBF is measured as a function of x. The width, or
influence, of the RBF is defined by σ.

The computation of the weight vectors wi is well un-
derstood in the context of regularization and interpolation
theory and is described elsewhere [17]. In brief, the optimal
weights W = [wij ] are the solution to the linear least
squares problem

(G + λI)W = Z (7)

where the elements Gij of the design matrix G correspond
to Equation 6 evaluated at observation pose i and RBF
center j, and the rows of matrix Z correspond to the
training observations. When λ is 0 and G−1 exists, the
computed weights result in a network whereby Equa-
tion 5 interpolates the observations exactly. However, the



presence of noise and outliers and the complexity of
the underlying function being modeled, can result in an
interpolation which is highly unstable. The solution can
be stabilized by adding a diagonal matrix of regularization
parameters λI to the design matrix G. In this work, these
regularization parameters and the RBF width σ are set by
hand at the outset.1 While ridge regression can be em-
ployed to compute the optimal regularization parameters,
empirical experience indicates that this approach is not
necessary for the distributions of measurements that are
being interpolated.

If the design matrix employs every observation pose as
a center for a RBF, the computational cost of computing
the weights for n observations is that of an O(n3) singular
values decomposition of an n by n matrix, followed by
an O(n) back-substitution for each element of the feature
vector z. For computational savings, at the cost of reduced
accuracy, the number of RBF centers can be limited to a
subset of the observation poses. In practice, we limit the
maximum number of centers to 25, and select the subset
of observation poses by ensuring that they cover the pose
space uniformly. The drawback to this approach is that
features that are visible over a large portion of the pose
space are limited in terms of accuracy. One subject for
further study is the question of whether a well-informed
but non-uniform selection of training poses can yield more
accurate models.

Figure 4 depicts three generated instances of the same
feature from different poses. The predicted feature image
i is plotted at the predicted image location x. Note the
variation in both appearance, position and scale of the
feature in the image.

In addition to modeling the quantitative properties of
a feature, it is also desirable to model its visibility as a
function of pose; that is, whether or not a particular feature
is visible from a particular location in pose-space. This
information aids the task of localization and is important
for the problem of reconstructing the scene. The same regu-
larization framework presented in this section is employed
to learn a visibility likelihood function p(visible(f)|x),
training the function with the binary-valued observability
of each feature from each visited pose in the training set.2

This information is also useful for informing the question
of where to collect new training examples.

D. Model Evaluation

Once features have been tracked and modeled, it is
desirable to evaluate the quality of the models. Each
feature model is evaluated using leave-one-out cross-
validation [18], which operates by constructing the model
with one data point z excluded, predicting that data point
z∗ using the construction and measuring the difference
ze = ||z−z∗|| between the actual point and the prediction.

1For the experiments presented here, λ = 0.01 and σ = 2D/
√

2M
where D is the maximal distance between any two poses in the training
set and M is the number of training poses.

2The computed RBF model could produce likelihood values less than
zero or greater than one– these outputs are clamped when they occur.

TABLE I
TRAINING SET STATISTICS FOR SCENES I AND II.

Attribute Scene
I II

Training images 121 291
Pose space (cm) 200x200 300x600

Ground truth accuracy (cm) 0.5 4.0
Sample spacing (cm) 20 25

By iterating over several (ideally all) of the training data,
and computing the covariance R of the resulting error
measures, we can build up a measure of how well the
model fits the data and, more importantly, how well we
might expect it to predict new observations.

The model covariance R is defined as

R =
1
k

k∑
j=1

zezT
e (8)

where k is the number of observations of the feature and
ze is measured for each removed observation j.

Given R, the observation likelihood function for a fea-
ture observation z, conditioned on pose x, p(z|x) is then
expressed as a Gaussian distribution:

p(zi|x) = c exp(−0.5zT
e R−1ze) (9)

where c = ((2π)M |R|)−1/2, M is the dimensionality of
the transformed observation space, |R| is the determinant
of R, and exp(x) = ex. In this case, ze is computed using
the complete feature model with z∗ = F (x).

V. EXPERIMENTAL RESULTS

Fig. 5. Images from Scene I.

Fig. 6. Images from Scene II.

The experimental results presented in this section will be
based on training data collected for two scenes (Figures 5
and 6). Table I indicates number of training images, pose-
space geometry and approximate accuracy of the ground-
truth pose information for each scene. The training pose
space was a grid in which the robot collected samples at
approximately uniform intervals. In addition, the orienta-
tion of the camera was held constant.



Fig. 4. A single feature as generated from three different camera positions.

Scene I was collected using a camera mounted on a
Nomad 200 robot. A laser-pointer was mounted on the
robot to point at the floor and the robot’s position was
measured manually based on the position of the laser point
on the floor. It is assumed that the accuracy of these
measurements is about 0.5cm.

Scene II was explored by taking 291 training images
at uniform intervals of approximately 25cm over a 3.0m
by 6.0m pose space. A second observing robot equipped
with a laser tracking system was deployed to estimate
the ground-truth position of the exploring robot to an
accuracy of approximately 4cm. The implementation of the
laser tracking system is described in [19]. The observer
employed a laser range-finder to accurately determine the
camera position from the range and orientation of a three-
plane target mounted on the exploring robot. For the pur-
poses of this scene, the robot attempted to take training im-
ages at the same global orientation. However, uncertainty
in the robot’s odometry, as well as the observing robot’s
estimate, led to some variation in this orientation from
pose to pose. While this orientation variation affects the
accuracy of the pose estimation process, our experimental
results indicated that the reduction in accuracy is small
relative to other effects.

A. Scene Reconstruction

Once a set of feature models have been trained, it
is possible to apply the generative framework to predict
observations from novel viewpoints (Figure 1b). At each
position along a virtual trajectory, for each feature, the
visibility likelihood of the feature is evaluated, and if it
is greater than 0.5, the feature observation is predicted
based on the current pose. The feature observation is
subsequently rendered into the image using the predicted
scale, appearance and position of the observation. Where
more than one feature paints the same pixel, a winner-
takes-all strategy is employed in which the feature model
with smallest covariance determinant |R| is selected. Note
that the reconstruction cannot predict pixels for which there
is no visible feature model, and as such, the lower edge of
the image is left unshaded. It may be that these regions can
be shaded by extrapolating from the nearby texture using
Markovian reconstruction methods [20], [21].

B. Localization

The goal of the feature learning framework is to achieve
accurate localization performance with a mobile robot.

Given a set of feature models, the task of robot local-
ization can be performed by applying Bayes’ Law, as
per Equation 1. When a pose estimate is desired, an
observation is obtained and optimal matches z = {zi}
to the learned features are detected in the image using
the method described in Section IV-B. Note that when a
prior pose distribution p(x) is available, features can be
selected for matching based on the probability that they are
visible. When the prior is uniform, that is, no information is
available, one can employ the efficient indexing methods
described by Se et al. to efficiently match features [22].
Such a mechanism is beyond the scope of this paper.

Once matched, each feature observation zi contributes a
probability density function p(zi|x), which is defined as the
product of the distribution due to the maximum likelihood
prediction of the model p(zi|x, visible(f)) (Equation 9)
and the feature visibility likelihood p(visible(f)|x):

p(zi|x) = p(zi|x, visible(fi))p(visible(fi)|x). (10)

Pose inference based on the observation of a set of
image features can be accomplished by assuming that the
observation model p(z|x) is approximated by the joint
likelihood of the set of feature observations conditioned
on pose x:

p(z|x) ≈ p(z1, z2, . . . , zn|x) (11)

where we assume the formula is an approximation because
we are ignoring any information that might be present in
parts of the image other than those occupied by the detected
features.

Assuming conditional independence between the indi-
vidual feature observations, the probability of an observed
image is defined to be the joint likelihood of the individual
observations:

p(z|x) =
n∏

i=1

p(zi|x) (12)

In the absence of informative priors, the pose x∗ that
maximizes the joint likelihood of the observations is con-
sidered to be the maximum likelihood position of the robot.
It is not clear, however, that the conditional independence
assumption holds for features derived from a single image
and, furthermore, outliers can lead to catastrophic cancella-
tion of the joint distribution. Instead, we employ a mixture
model defined by

p(z|x) ≈
n∑

i=1

p(zi|x) (13)



The reader may refer to [23] for a discussion of why this
approach is reasonable.

Fig. 7. A posteriori pose distributions for a selection of the Scene I
validation images. Each image represents an overhead view of the 2m
by 2m pose space. Darker regions correspond to more likely poses. Note
that several of the distributions are not Gaussian or unimodal.
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Fig. 8. An example a posteriori pose distribution for a validation image
from Scene I.

Localization performance was measured using both of
the training scenes. For each scene, SIFT features were
extracted from the training images and the models were
trained as described. Those models with large cross-
validation error, or with too few observations to construct
a useful model, were removed, resulting in a set of reliable
feature models.

To validate localization performance using the learned
models, for each scene an additional set of images were
collected from random poses, constrained to lie anywhere
within the training space. These validation images were
used to compute maximum-likelihood (ML) estimates of
the camera’s position using Equation 13, and these es-
timates were compared against the ground truth pose
information.

The ML estimates themselves were computed by ex-
haustive search over a multi-resolution discretization of the
training space, selecting the x that maximized Equation 13.

In particular, the training space was discretized into a 40 by
40 grid covering the entire training space and Equation 13
was evaluated at each position in the grid. Subsequently, at
the maximal grid location a new 10 by 10 grid was instan-
tiated over a neighborhood spanning 7 by 7 grid positions
in the larger grid and Equation 13 was evaluated over the
new grid. This process iterated recursively to a resolution
of 1% of the intervals between training poses, and the
maximal grid pose at the highest resolution was returned.
Note that a more efficient estimator, such as Monte Carlo
sampling, could be easily deployed for applications where
computational resources are limited.
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Fig. 9. Localization results for Scene I: the set of maximum-likelihood
pose estimates (’x’) plotted against their ground truth estimates (’o’).
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Fig. 10. Localization results for Scene II: the set of maximum-likelihood
pose estimates (’x’) plotted against their ground truth estimates (’o’).

In practical settings, one is not always interested in the
ML pose estimate, but sometimes in the entire probability



TABLE II
SUMMARY OF LOCALIZATION RESULTS.

Scene
I II

Training images 121 291
Pose space (cm) 200x200 300x600
Ground truth accuracy (cm) 0.5 4.0
Sample spacing (cm) 20 25
Validation Images 29 93
Valid Pose Estimates 29 92
Mean Error (cm) 7.7 18.4
Mean x Error (cm) 4.8 7.2
Mean y Error (cm) 5.3 15
Minimum Error (cm) 0.63 2.8
Maximum Error (cm) 18 62

distribution over the pose space, which can provide infor-
mation about alternative hypotheses in environments which
exhibit significant self-similarity. Figure 7 depicts the a
posteriori pose distributions computed for a selection of
the Scene I validation images. Each frame in the Figure
represents the evaluation of Equation 13 computed over a
uniform discretization of the 2m by 2m pose space, where
darker regions correspond to more likely poses. Figure 8
depicts another pose distribution, derived from a Scene I
validation image, in greater detail.

Given that each ML estimate has a numerical likelihood,
it is possible to reject pose estimates that do not meet a
particular confidence threshold. In this way, one estimate
was rejected for Scene II, where a lack of successful feature
matches reduced the confidence of the estimate.

Figures 9 and 10 plot for each scene the location of
the ML estimates for the validation images (’x’) against
the ground truth camera position (’o’) by joining the two
points with a line segment for each scene. The length of
each line segment corresponds to the magnitude of the
error between the corresponding pose estimate and ground
truth. The mean absolute error, mean x and y direction
errors (corresponding to sideways and looming motion,
respectively), minimum and maximum errors and number
of retained estimates for each validation set are tabulated in
Table II. The larger error in the y (looming) direction corre-
sponds to the fact changes in observations due to forward
and backward motion are not as pronounced as changes
due to side-to-side motion. Reducing the uncertainty in this
direction could be performed using an active localization
method, such as Markov Localization [12].

VI. CONCLUSIONS

This paper presented an approach to modeling the
pose-dependent characteristics of the scale-invariant feature
transform. Such an approach extends our previous work
on visual feature modeling and takes advantage of the
additional properties of SIFT features, such as optimal fea-
ture scale and viewpoint-invariant descriptors, that enable
unambiguous matching, and a more versatile feature model.
We have applied these models to the problems of scene re-
construction, and robot localization, with successful results.

Our future work involves employing feature models in
very large pose spaces. In these domains, SIFT features

are well suited as there are extent indexing methods which
enable efficient feature matching. We are also investigating
on-line map learning approaches, where the ground truth
pose information is uncertain, or even unknown.
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