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{dudek,simra}@cim.mcgill.ca

Abstract— We consider the effect of exploration policy in
the context of the autonomous construction of a visual map
of an unknown environment. Like other concurrent map-
ping and localization (CML) tasks, odometric uncertainty
poses the problem of introducing distortions into the map
which are difficult to correct without costly on-line or post-
processing algorithms. Our problem is further compounded
by the implicit nature of the visual map representation,
which is designed to accommodate a wide variety of visual
phenomena without assuming a particular imaging platform,
thereby precluding the inference of scene geometry. Such a
representation presents a requirement for a relatively dense
sampling of observations of the environment in order to
produce reliable models. Our goal is to develop an on-
line policy for exploring an unknown environment which
minimizes map distortion while maximizing coverage. We do
not depend on costly post-hoc expectation maximization ap-
proaches to improve the output, but rather employ extended
Kalman filter (EKF) methods to localize each observation
once, and rely on the exploration policy to ensure that
sufficient information is available to localize the successive
observations. We present an experimental analysis of a
variety of exploratory policies, in both simulated and real
environments, and demonstrate that with an effective policy
an accurate map can be constructed.

I. I NTRODUCTION

In this paper we consider the problem of automatically
exploring an environment and constructing a visual map.
In particular, we are interested in selecting an exploration
strategy which minimizes map uncertainty on-line. Such
uncertainty is accumulated by errors in odometric sensing,
and can grow unbounded over time. Our work differs from
other exploration techniques in that the map representation
is implicit in nature; that is, we do not produce a geometric
description of the environment but rather a mapping from
image features to robot pose. As such, it precludes explicit
geometric inference of landmark positions and hence
is not immediately suited to standard Kalman filter, or
expectation maximization techniques [1], [2], [3]. Rather,
our goal is to minimize error by selecting an appropriate
exploration trajectory which allows the robot to localize
against its known map as accurately as possible prior
to adding a new observation to the map. We examine a
variety of such trajectories, both in simulation and using
a real robot, and present experimental results.

Our approach is aimed at using a purely on-line ex-
ploration paradigm to produce a map that is suitable for
robotic navigation. Of course, in many contexts it might
be desirable to post-process such a map to further optimize
its accuracy, but the current work is motivated by the
supposition that even in such cases a good initial map
is helpful.

A key component of our work is the visual map
representation [4]. Unlike the vast majority of mapping
paradigms, which employ range sensors derived from
sonar, laser or stereo cameras, visual maps make no
attempt to infer scene geometry, but rather encode vi-
sual landmarks implicitly in the image domain. As such,
visual maps do not require camera calibration, and can
encode a wide variety of visual phenomena, including
exotic phenomena such as specularity, shadowing and
atmospheric hazing, using arbitrary imaging geometry.
The challenge posed by such a representation is that unlike
geometric landmarks it involves no explicit parameters to
estimate, and hence is not well-suited to filters which aim
to compute maximum-likelihood parameterizations. This
poses an interesting challenge for autonomous mapping–
how to maximize the map likelihood without an explicit
representation. It should also be noted that, by definition,
an implicit representation makes no prior assumptions
about imaging geometry, so a further challenge is to infer
the correct map without effectively linearizing away the
nonlinear interactive properties of the environment and
sensor. Finally, an implicit representation also poses the
requirement for a relatively dense sampling of observa-
tions covering the pose space. This presents additional
challenges in that the exploratory trajectory can be quite
long, even in a small environment.

With these challenges in mind, our goal is to develop
a technique for maximizing coverage of a relatively small
pose space in order to generate an accurate visual map.
The mapping process can be made more robust by com-
posing a large map using a set of smaller sub-maps [5],
[6], [7], [8]. These principles should be applicable to the
mapping context described here, but can be viewed as a
secondary stage of processing and control.

In the following sections we examine previous work



on the CML problem, followed by a description of the
visual mapping framework. We then go on to establish a
framework for exploration and discuss several candidate
exploration policies. Finally, we present experimental re-
sults based on both simulation and validation in our lab,
and discuss their implications.

II. RELATED WORK

The problem of concurrent mapping and localization
(CML), also known as simultaneous localization and map-
ping (SLAM) has received considerable attention in the
robotics community [9], [10], [3], [11], [12]. The state of
the art in CML can be broadly subdivided into one of two
approaches (and various hybrids). One family of methods
collects measurements and incrementally builds the map
while the robot moves (i.e. in an on-line fashion). Usually
the map is represented as a set of landmarks derived from a
range sensor, and a Kalman filter is employed to minimize
the total uncertainty of the robot pose and the individual
landmark positions [1], [2]. These techniques differ from
previous Kalman filters employed for localization ([9],
[10]) in that the landmark positions, as well as the robot
pose, are being estimated. While there exist approximation
techniques for reducing the computational expense of on-
line CML (c.f. [13]), each update in the standard on-line
approach is quadratic in the number of landmarks.

The second family of methods for CML involves first
collecting measurements and then post-processing them in
a batch. The standard post-processing method is to employ
Expectation Maximization (EM), again to minimize the to-
tal uncertainty of robot poses and landmark positions [3].
One goal of our work is to develop an on-line exploration
method which maximizes the accuracy of the map without
resort to expensive map updating. While outside the scope
of this paper, this result can in turn be employed as a
reliable prior for subsequent EM-style post-processing.

While most of the prior work on mobile robot mapping
exploits the use of range data to construct an explicit
geometric map, several authors have considered the use of
visual data. Nayar,et al were among the first to consider
the use of a purely appearance-based representation of the
world for robot navigation using principal components
analysis (PCA) [14]. Pourraz and Crowley considered
the stability of PCA-based methods for appearance-based
navigation of a mobile robot [15] and Jugessur and Dudek
looked at voting-based methods to make PCA methods
robust to changes in the scene or illumination [16]. Several
authors have also considered the use of vision-based
sensing to extract a geometric map, which can then be
used in a more traditional CML context. Se,et al extract
stereo-based landmarks using a scale-invariant filter [17],
and Davison and Kita considered the problem of actively
servoing a stereo head for landmark acquisition as a robot
traverses uneven terrain [18]. Finally, Dellaertet al take

advantage of environmental invariants, such as a planar
ceiling, to construct a mosaic-like map by registering an
ensemble of images [19].

III. V ISUAL MAPS

Fig. 1. Landmark Learning Framework: Salient features are detected in
the input images and tracked across the ensemble. The resulting feature
sets are subsequently parameterized as functions of the robot pose.

Our visual map representation employs the landmark
learning framework described by Sim and Dudek [4]. We
review it here in brief and refer the reader to the cited
work for further details.

The key idea is to learn a set of visual features of a
scene, and parametrically describe them so that they can
be used to estimate one’s position (that is, they can be
used for localization). The features are pre-screened using
an attention operator that efficiently detects statistically
anomalous parts of an image and robust, useful features
are tracked over an image ensemble and recorded along
with an estimate of their individual utility.

The framework operates as follows. Assume for the
moment that we have collected an set of observations of
a scene with ground-truth position information associated
with each image. The landmark learning framework op-
erates by first selecting a set of local features from the
images using a measure of visual attention, tracking those
features across the ensemble of images by maximizing the
correlation of the local image intensity of the feature, and
subsequently parameterizing the set of observed features
in terms of their behaviour as a function of the known
positions of the robot (Figure 1). In the context of map-
ping, as each image arrives, matches to the parameterized
features are located in the image, the image is localized
from the matches using a Kalman Filter (see below), and
the matched observations are inserted into the map using
the filter estimate as the observation pose.

The feature paramterization employed in [4] computes
a radial basis network interpolator of feature properties
such as local appearance and image position. In practice,
an arbitrary interpolation scheme can be employed and in



this work, for reasons of efficiency, we approximate the
interpolant using bilinear interpolation over the Delaunay
triangulation of the observation poses. Furthermore, again
for efficiency reasons we measure only the image position
of the landmark. Our previous work indicates that while
the local appearance distribution is informative for local-
ization, image position is a stronger and more compact
indicator of pose [20].

IV. EXPLORATION FRAMEWORK

We have adapted the Extended Kalman Filter (EKF)
localization framework described in the seminal papers
by Smith et al and Leonard and Durrant-Whyte as the
basis for our exploration framework [9], [10]. While
the work by Leonardet al employed geometric beacons
derived from range sensors as landmarks, the visual map
representation instead employs landmark observations in
the visual domain. It should be noted that, unlike EKF
implementations deployed for CML which encode both
robot pose and landmark position parameters, the only
parameters maintained in our implementation are those
of the robot pose. Given that the EKF has been studied
extensively, we repeat here only those aspects of our
implementation that are particular to our work.

At each time stepk, the robot executes an actionu(k),
and takes a subsequent observationz. The plant model
is updated fromu according to the standard EKF formu-
lation, and a set of matches to known landmarkszi are
extracted from the observed image. Given that the visual
map assumes a 2D configuration space, (that is, fixed
orientation) some rehearsal procedure may be required
to align the camera prior to taking an observation– we
consider this issue in further detail in presenting our
experimental results.

For each successfully matched landmark, a predicted
observation̂zi is generated using the visual map, and the
innovationvi(k+1) is computed

vi(k+1) = zi(k+1)− ẑi(k+1) (1)

The innovation covariance requires estimation of the
Jacobian of the predicted observation given the map and
the plant estimate. We approximate this Jacobian as the
gradient of the nearest face of the model triangulation and
define it as∇hi . Defined as such, the innovation covariance
follows the standard observation model:

Si(k+1) = ∇hiP(k+1|k)∇hT
i +Ri(k+1) (2)

where P is the pose covariance following the actionu,
and R is the cross-validation covariance associated with
the learned landmark model. It is important to note thatR
serves several purposes– it is simultaneously an overall
indicator of the quality of the interpolation model, as
well as the reliability of the matching phase that led
to the observations that define the model; finally it also
accomodates the stochastic nature of the sensor.

A. Outlier Detection

It should be noted that feature correspondence takes
place once an observation is obtained. However, there
may be outlier matches that must be filtered out. As
such, we employ the gating procedure described in [10],
with the additional constraint that the gating paramterg
is computed adaptively. Specifically, we accept landmark
observations that meet the constraint

vi(k+1)S−1
i (k+1)vT

i (k+1)≤ g2 (3)

where
g = max(gbase, ḡ+2σg) (4)

andgbase is a user defined threshold, and ¯g andσg are the
average and standard deviation of the set of gating values
computed for each landmark observation (that is, the left-
hand side of Equation 3). This selection ofg allows the
filter to correct itself when several observations indicate
strong divergence from the predicted observations– indi-
cating a high probability that the filter has diverged and
affording the opportunity to correct the error.

B. Map Update

Given the set of gated observations, the EKF is updated
according to the standard formulation, whereby the set
of filtered innovation measurements is compounded into
a single observation vector and a least-squares solution
is computed for the Kalman gain. Combined with the
plant model, a pose estimate and associated covariance
are obtained. Once an updated pose estimate is available,
the successfully matched landmarks are inserted into the
visual map, using the estimated pose as their observation
pose. It should be noted that we also insert those obser-
vations that were removed by the gating procedure. We
take this approach because it serves to increase the cross-
validation covariance associated with the mis-matched
landmark, thereby reducing its influence for future local-
ization. As such, at the end of the exploration procedure,
only those landmarks that serve to match reliablyand
localize reliably can be selected and retained.

In the subsequent section we consider the problem of
selecting exploration trajectories that result in an accurate
map using the EKF framework.

V. EXPLORATION POLICIES

We are interested in comparing candidate robot explo-
ration policies with the goal of balancing two competing
interests: coverage and accuracy. In other words, we want
to build the largest, most accurate map possible in a finite
amount of time. Given that there are an infinite number of
possible exploration trajectories, we will restrict our con-
sideration to a set of policies which are either intuitively
satisfying or serve to illustrate an extreme case. The par-
ticular policies we will examine are described below. They



are SeedSpreader , Concentric , FigureEight ,
Random, Triangle and Star . An example of each
trajectory is depicted in Figure 2.

a) SeedSpreader : The robot follows a seed-
spreader pattern through the environment [21]. We employ
a variation on this approach by oscillating in a zig-
zag motion as the robot moves along the path. This is
performed in order to ensure that the visual map spans two
dimensions, even along the first pass of the seed spreader.

b) Concentric : The robot traces a series of con-
centric circles out from its starting point, reversing direc-
tion for alternating circles.

c) FigureEight : Like theConcentric pattern,
the robot traces a set of concentric circles, but in a series
of growing figure-eights, bringing the robot close to its
starting point with each pass.

d) Random: The robot takes a random step in a
random direction at each time step.

e) Triangle : The robot traces a series of con-
centric equilateral triangles, taking observations at fixed
intervals along each side. The advantage of this approach
is that the ideal set of observation poses covers the pose
space in a uniform tiling.

f) Star : The robot oscillates along a set of rays
emanating from its starting point. The rays grow in length
over time such that the set of observation poses is roughly
the same as that forConcentric .

In all cases, the exploration model follows aPlan,
Act, Observe, Update loop, planning a motion
based on the exploration policy and the covered trajectory,
executing the action, taking an observation, and updating
the Kalman Filter and visual map. A single action is either
a rotation or a translation, and new images are obtained
only after a translation. Furthermore, while the filter is
always updated after obtaining a new image, the image
is only added to the visual map if there are no previous
images from nearby poses in the map. As such, when the
robot traverses previously explored territory, it localizes
without updating the map.

A. Safety

In all robotic applications, special attention must be
devoted to the safety of the robot and other agents in the
environment. Given that the visual map does not encode
geometric information, obstacle inference and avoidance
requires careful consideration. We employ a sonar sensor
as a virtual bumper, using the last sonar observation to
determine whether an action is safe or unsafe to execute.

VI. EXPERIMENTAL RESULTS

In this section we present the results of our experiments
in simulation and with a real robot. Our approach involves
executing each exploration policy in turn and computing
the deviation between the estimated trajectory and the
actual trajectory of the robot.

A. Simulation

Our experimental setup for the simulated experiments
is as follows: a simulated robot is placed in one room of
a 1200cm by 600cm rectilinear environment. The robot
has a ring of sixteen evenly spaced sonar sensors for
detecting collisions, and the robot’s odometry model is
set to add normally distributed zero-mean, 1% standard
deviation error to translations and normally distributed
zero-mean, 2% standard deviation error to rotations. The
camera model is simulated by texture-mapping the walls
with real images of our laboratory, and rendering the scene
based on the ground-truth pose of the robot and a model
of a simple perspective camera. As we have previously
mentioned, we assume that the camera has the ability to
align itself using a procedure which is external to the
robot drive mechanism, possibly using a compass and pan-
tilt unit or an independent turret, such as that which is
available on a Nomad 200 robot. Using this procedure,
when an image observation is required, the camera snaps
two images, one along the globalx axis and one along the
global y axis, and returns the composite image. Figure 3
illustrates a typical image returned by the camera in one
direction in the simulated environment.

Fig. 3. Simulated camera view.

Each exploratory policy was run in the simulated envi-
ronment, executing actions and taking observations until
one of two conditions was met: either the visual map
contained two hundred images, or the robot was unable
to execute its action safely. The starting pose of the robot
was selected to be the center of the room, except in the
case of theSeedSpreader , which started in the corner.

The results of the experiments are tabulated in Table I.
For each policy we report the mean deviation between
the filter pose estimate and ground truth and the mean
deviation between odometry and ground truth. We also
record an estimate of the space explored per unit time
(exploration efficiency), expressed as the total number of
observation images inserted into the visual map divided by
the total number of actions executed by the robot. A small
value indicates that the robot spent most of its time in
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Fig. 2. Example Trajectories by Policy

TABLE I

SUMMARY OF EXPLORATION RESULTS BY EXPLORATION POLICY.

Method

Mean
Filter
Error
(cm)

Mean
Odometric
Error
(cm)

Exploration
Efficiency
(images/step)

Maximal
Distance
from O
(cm)

SeedSpreader 26.4 43.7 0.178 373
Concentric 9.57 4.95 0.496 183
FigureEight 5.09 6.87 0.411 242.9
Random 8.46 93.4 0.475 347
Triangle 30.1 12.0 0.480 173
Star 1.63 23.8 <0.001 152

previously explored space. Finally, we report the maximal
distance achieved from the robot’s starting pose.

Figure 4 summarizes the mean filter error and mean
odometry error for each method and Figure 5 summarizes
the exploration efficiency, expressed as the number of
images inserted into the map per robot action. Note that
while most of the methods inserted images at a near-
optimal rate (after each rotate-translate pair of actions),
as expected, theStar policy is highly inefficient as it
repeatedly traverses previously explored terrain.

Figure 6 depicts propagation of error versus ground
truth for the filter and odometer for each policy, sampled
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Fig. 4. Mean Filter Error and Odometry Error for each method

at intervals of ten time steps. It is clear from these results
that theStar policy produced the most accurate map,
and the Random policy performed very well relative
to the accumulated error. While the good performance
of the Random policy is likely due to the fact that it
occasionally re-traverses old territory, it is no doubt an
unsuitable choice for task-driven robotics. It is perhaps
surprising that theConcentric and FigureEight
policies do not perform more accurately. The principal
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Fig. 5. Exploration Efficiency for each method.

cause is that as the circles get wider, errors from the
inner circles are amplified by the linearization of the filter,
and add bias to the localization estimates. In addition,
the errors become highly correlated between successive
observations, whereas such correlations are avoided using
theStar method by relocalizing with respect to a reliable
reference point (the centre of the star). Finally, note
the sudden and extreme divergence of theTriangle
method, a result of divergence in the filter as the robot
failed to correctly turn the corner of one of the points of
the triangle.

B. Real world performance

We have implemented the exploration framework on a
Nomadics Super Scout mobile robot. The Scout platform
employs a differential drive mechanism for steering and
is particularly prone to rotation errors. The robot was
equipped with a monocular camera and a KVH C100
compass. The compass was employed to align the camera–
while local variations in magnetic field made the compass
useless for navigation, the variations were repeatable as
a function of pose and degraded smoothly enough that
the robot could be steered to face in the direction of a
particular heading when an image was captured. Nonethe-
less, some noise was observed in observation orientation,
and this noise presented itself in relatively large cross-
validation estimates for thex image position of any given
landmark. Given the time required to align the camera,
only one direction was imaged for each observation. The
robot commenced exploration from the centre of an open
space in our lab (Figure 7a)). A sample image from the
robot’s camera is shown in Figure 7b).

We ran two experiments on the robot, employing the
Concentric and Star exploration policies respec-
tively. Exploration continued until 100 images were in-
serted into the map. Since the ground truth trajectory was
not available, when exploration terminated the robot was
instructed to navigate back to its starting position. The
discrepancy between the final position and the starting

(a) The robot in the environment.

(b) Robot’s eye view of the scene

Fig. 7. The real-world environment and robot’s eye view.

TABLE II

FINAL POSE ERRORS BY EXPLORATION POLICY FOR THE REAL

ROBOT.

Method

Actual
Final
Pose
(x,y)(cm)

Odometer
Pose
(x,y)(cm)

Control
Pose
(x,y)(cm)

Concentric (6,-14) (55,20) (-6,-15)
Star (21,2) (171,133) (24,-23)

position was measured by hand. Figure 8 depicts the filter
trajectory for each method.

The discrepancy between the robot’s starting and end-
ing positions are shown in Table II. In all cases, the
robot started at pose(0,0), and ended the trajectory by
homing until the filter indicated a pose within 3cm of
the origin. Depicted in the table are the actual ending
pose (measured by hand), the ending pose reported by
the odometer, and the ending pose reported by the control
inputs. All measurements are in centimetres. The filter out-
performed both odometry and the control inputs in both
cases, albeitConcentric demonstrated only a marginal
improvement over the control estimate. It is remarkable
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Fig. 6. Filter and Odometry Error plotted versus Time for each Method

to note the degree to which the odometer diverged even
from the control inputs.

VII. D ISCUSSION ANDCONCLUSIONS

In this paper we have examined the problem of automat-
ically constructing a visual map of the environment, with
particular attention paid to selecting an exploration policy
that balances accuracy with efficiency. Our simulated re-
sults results indicate that this particular balance is difficult
to strike, as the best way to improve accuracy is to select a
highly inefficient method. We also presented results using
a real robot and, while the lack of ground truth presents
a difficulty in evaluating the results, the homing strategy
indicated that the resulting map was useful for navigation
and far more accurate than odometry-based navigation.

One interesting venue for future work is the combina-
tion of appearance-based mapping, as presented here, with
simultaneous geometric mapping and localization using
range estimates extracted from the vision sensor (and/or
from supplementary data sources). While the appearance-
based method has certain advantages in terms of its
freedom from strong dependance on assumptions about
scene geometry, reflectance, lighting, etc., it does have
shortcomings that might be addressed by the use of geo-

metric methods whose failure modes are complementary
to those of the appearance-based technique.
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