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Abstract— Recent work on robotic exploration and active
sensing has examined a variety of information-theoretic
approaches to efficient and convergent map construction.
These involve moving an exploring robot to locations in the
world where the anticipated information gain is maximized.
In this paper we demonstrate that, for map construction
using bearings-only information and the Extended Kalman
Filter (EKF), driving exploration so as to maximize expected
information gain leads to ill-conditioned filter updates and a
high probability of divergence between the inferred map and
reality. In particular, we present analytical and numerical
results demonstrating the effects of blindly applying an
information-theoretic approach to bearings-only exploration.
Subsequently, we present experimental results demonstrating
that an exploration approach that favours the conditioning of
the filter update will lead to more accurate maps.

I. INTRODUCTION

This paper considers the problem of designing active
exploration policies that maximize the accuracy of a robot’s
map as it moves through an unknown environment. Au-
tonomous exploration is a problem that has only recently
gained attention, largely due to the recent success of the
robotics community at formalizing the map construction
problem, otherwise known as simultaneous localization and
mapping (SLAM). The key problem in SLAM is that a
robot’s actions and observations are noisy, and as such the
robot can never know its precise position, or the precise
positions of features in the environment. Solutions to
SLAM generally amount to simultaneously maximizing the
probability of the robot’s trajectory and inferred landmark
positions, conditioned on its actions and observations.

Very few authors have considered the problem of how a
robot can best navigate through the world so as to maximize
the quality of its map. Where results do exist they often
assume perfect robot localization (such as the rich literature
on bearings-only target tracking [1], [2]). Furthermore, the
extant results tend to emphasize an information-optimal
approach to exploration, where the sensor is driven to
locations that maximize the expected information to be
gained from acquiring an observation at that location [3],
[4], [5], [6].

This paper makes two important contributions. First,
it presents an analysis demonstrating that information-
optimal approaches to active exploration can be detrimental
to map quality, particularly when coupled with approximat-
ing assumptions that are common in SLAM approaches (for
example, those applied by the extended Kalman Filter and

other Gaussian filters), and sensing modalities that tend
towards ill-posed localization estimates. In the extreme,
such approaches can be prone to filter divergence, rendering
the map useless and the robot effectively lost. Second,
this paper presents an alternative approach to exploration
that optimizes a map’s accuracy by taking a policy that
emphasizes the conditioning of the map update step. It
will be seen that such an approach results in a highly
conservative exploration strategy that greatly reduces the
probability of divergence.

We will apply our analysis in the context of performing
SLAM with an omnidirectional bearings-only sensor, using
the EKF for state estimation. Most SLAM approaches
consider the case where the robot is equipped with a sensor
that can measure both range and bearings to landmarks in
the world. However, there are a wide variety of contexts,
such as monocular vision sensing, where the robot has
access only to a bearing measurement to each observable
landmark. In addition, bearings-only SLAM solutions using
the EKF and related filters demonstrate a higher tendency
to diverge, due primarily to the ill-posedness of initializing
landmark positions from one or two early observations,
as well as the underlying non-linear relationship between
landmark positions and observations. A limited number of
authors have considered this problem, primarily from the
perspective of filter design [7].

II. BEARINGS-ONLY SLAM USING THE EKF

The extended Kalman Filter has been widely deployed
for range-and-bearings SLAM approaches [8], [9]. The
state of the world at time t is generally described as a
vector xt = [xr

t l1 . . . ln]T , where xr
t = [x y φ]

describes the pose of the robot in a planar environment,
and li describes the positions of n landmarks in the
world, all expressed in a global coordinate frame. Because
sensor observations zt and robot actions ut are generally
noisy, a probabilistic framework is applied to the state
estimation problem. In the Kalman Filter, the probability
of the state xt, conditioned on the sequence of actions
A = {u1, . . . ,ut} and observations Z = {z1, . . . , zt} is
approximated as a Gaussian distribution:

p(x|A,Z) ≈ k exp{(x− x̂)T P−1(x− x̂)} (1)

with the mean x̂ representing a maximum-likelihood state
estimate with covariance P, and k is a normalizing constant.



As the robot performs actions (that is, moves through the
environment), the pose distribution is propagated according
to a plant, or motion model x′ = f(x) describing the un-
certain outcome of the robot’s actions, and as observations
are taken, the map and pose of the robot are updated using
a measurement model z = h(x) describing the relationship
between poses and observations. For the EKF, the outcomes
of these processes are assumed to be normally distributed.

Of particular interest to the exploration problem is how
to minimize the uncertainty of the landmark positions over
time. This is typically measured as |Pt|, the determinant
of the state covariance at time t. It has been demonstrated
elsewhere ([3], [4]) that, if the robot has perfect localiza-
tion, a locally optimal strategy for data collection is to
drive the robot to positions that maximize the prediction
variance |S| of the observation:

S = ∇hP∇hT + R (2)

where ∇h is the gradient of the observation function h(·),
evaluated at the current state estimate x̂ and R is the
covariance matrix describing the sensor’s intrinsic noise
characteristics.

Note that S is a function of both the state estimate
µ and the map covariance P . Maximizing |S| has the
effect of moving the robot to locations in the world where
the least information is known about the observation. For
example, in the bearings-only case, it is advisable to move
the robot to take an observation from a direction orthog-
onal to the principal direction of a landmark’s uncertainty
covariance. The second point to note is that, all other things
being equal, the maximally informative pose will be one
that maximizes the determinant of the gradient covariance
∇h∇hT (by setting P to identity and keeping R constant).
Put simply, the robot should move to locations where the
observation changes rapidly as a function of pose. In the
bearings-only case, this amounts to moving as close as
possible to the landmark. These results also parallel results
in bearings-only target tracking, which move the sensor so
as to maximize the determinant of the Fisher information
matrix (FIM) Jf of the set of observations Z [2]:

Jf = −E[
∂

∂l2
log p(Z|l)] (3)

where l is the inferred target location.
These results are complicated somewhat by the fact that,

in the SLAM problem, the robot’s pose is not exactly
known. Maximizing |S| would imply maximizing the un-
certainty of the robot’s pose as well, which is clearly not
desirable. While computing the optimal trajectory analyt-
ically seems difficult, if not intractable in this case, one
can compute an “information surface” numerically by sim-
ulating robot actions and observations and examining their
effects on the posterior covariance P [10]. The results of
one such simulation are depicted in Figure 1. These results
indicate that, even in the presense of pose uncertainty, the
maximally informative actions move the robot as close as
possible to the landmark under observation.

Fig. 1. Expected information gain as a function of position, accounting
for noise injected due to robot motion. Darker poses correspond to more
informative destinations. The initial robot pose is located at the bottom
center of the image. A landmark is located at the center of the ’hole’ in
the peak (the hole being due to the minimum range of the sensor). The
diagonal ridge reflects the current heading of the robot, where motions
that don’t induce a rotation are preferred.

The next section will examine the conditioning of the
filter update step and demonstrate that the information-
optimal approach to computing exploration strategies is
prone to divergence.

III. THE CONDITIONING OF THE OBSERVATION
UPDATE

In this section we will examine the conditioning of
the update step in the EKF. When the robot takes an
observation z the state estimate x̂ is updated by weighting
the innovation v = z − h(x̂) by the Kalman gain W as
follows:

W = P∇hT S−1 (4)

x̂′ = x̂ + Wv (5)

Here, W transforms the innovation into a state displace-
ment.

The EKF update equations effectively compute the log-
likelihood of the observation by solving the linear system

Sx̃ = v (6)

through Equations 4 and 5. Here, S is the observation co-
variance, determined by Equation 2 and the solution vector
x̃ is a displacement that will be subsequently projected into
the state space through P∇hT x̃. Hence, the stability of the
EKF update is dependent on the conditioning of the linear
system defined in Equation 6. Two quantities contribute
to the stability of this system. First, the configuration of
visible landmarks plays a key role, and second, the pose
of the robot relative to this configuration is also important.

We will compute the conditioning of this system an-
alytically for the two-landmark case. Below, we will
demonstrate similar results numerically for three- and four-
landmark configurations.

The bearings-only observation function is given by

z = h(x) = [tan−1(
∆y1

∆x1
)− φ . . . tan−1(

∆yn

∆xn
)− φ]T

(7)
where ∆xi and ∆yi are the x and y displacements between
the robot’s pose and the observed landmark i, respectively,



and φ is the orientation of the robot. This yields a gradient
function

∇h(x) = [
∂h

∂xrt

∂h

∂l1
. . .

∂h

∂ln
]T (8)

=
[

ỹ1 −x̃1 −1 −ỹ1 x̃1 0 0
ỹ2 −x̃2 −1 0 0 −ỹ2 x̃2

]
(9)

where x̃i is ∆xi/r2
i , ỹi is ∆yi/r2

i , with r2
i = ∆x2

i + ∆y2
i .

In order to simplify the analysis, we will assume P = I .
That is, the state covariance is diagonal and all uncertainties
are equal. In the general case, of course, this is not the
case. However, this simplifying assumption yields results
of interest that can extend to the general case. In addition,
we will assume that R = diag(σ2), a constant noise model,
which is not unreasonable for the bearings-only case. With
this assumption in mind,

S = ∇h∇hT + R (10)

=
[

2(ỹ2
1 + x̃2

1) + 1 + σ2 ỹ1ỹ2 + x̃1x̃2 + 1
ỹ1ỹ2 + x̃1x̃2 + 1 2(ỹ2

2 + x̃2
2) + 1 + σ2

]
(11)

=
[

a b
b d

]
(12)

The condition number of S is equal to the ratio of
the larger to the smaller eigenvalue of S, λ1/λ2, which
evaluates to

λ1

λ2
=

a + d +
√

(a + d)2 − 4(ad− b2)
a + d−

√
(a + d)2 − 4(ad− b2)

(13)

The stability of the Kalman filter update will be max-
imized when Equation 13 is minimized, and conversely,
the stability will be reduced when the ratio is large. It
can be seen that the difference between numerator and
denominator is controlled by |(a + d)2 − 4(ad− b2)|:

|(a+d)2−4(ad−b2)| = 4(((x̃2
1+ỹ2

1)−(x̃2
2+ỹ2

2))2+(β2+β+1))
(14)

where β = ỹ1ỹ2 + x̃1x̃2.
The system achieves maximal stability when the robot is

equidistant from both landmarks (cancelling the first two
terms), at a position such that the vectors from the robot
to the two landmarks are orthogonal (yielding β = 0).
Furthermore, the system becomes more unstable as the
robot moves closer to a landmark. That is, the quantity
is maximized by letting any ri go to zero, since x̃i and ỹi

will become unbounded.
These results indicate that poses yielding maximally

informative observations (as per the prediction variance,
Equation 2) are also maximally destabilizing for the filter.
This is a particular concern for the EKF, since these regions
also correspond to regions where the curvature of the
observation function is also large. In other words, the
neighborhood of the operating point of the local linear
approximation at these poses is very small, and that obser-
vations may be more likely fall outside this neighborhood.
When they do fall outside this neighborhood, the linear
extrapolation will be incorrect and the filter will diverge.

Figure 2 illustrates the effect of the relative configuration
of three landmarks {l0, l1, l2} on the conditioning of S.
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Fig. 2. Conditioning of the update problem based on landmark position.
Landmark 0 is assumed to lie at 0 degrees, while the x axis corresponds
to varying the position of landmark 1 from -180 to 180 degrees and
likewise the y axis varies the position of landmark 2. All three landmarks
are assumed to lie on the unit circle, with the robot at the origin.

The state covariance P is assumed to be the identity in
this analysis. The x − y plane in this figure corresponds
to the bearings to landmarks l1 and l2 as they move about
the unit circle, while l0 remains fixed at 0 bearing and
one unit distance from the robot. The z axis in the figure
corresponds to the log of the condition number of the
observation covariance ||S|| ||S−1||. Peaks in the surface
correspond to arrangements where all three landmarks are
collinear (an ill-posed localization problem), and valleys
generally correspond to arrangements of landmarks that
maximize the relative difference in bearings between land-
marks.

Figure 3 demonstrates numerical results examining the
effect of robot pose on the conditioning of S for three, and
four fixed landmarks. The landmarks are located on the unit
circle at bearings 0, 120o, and −120o in the three-landmark
case, and on the intersection of the unit circle with the
principal axes in the four-landmark case. Again, the state
covariance P is assumed to be the identity matrix. In these
plots, the robot pose varies over the x − y plane, with
a constant orientation of 0. Peaks in the plot correspond
to the pose of the robot falling close to a landmark. The
optimal pose (in terms of conditioning the update problem),
falls at points equidistant from all the landmarks, with
well-defined troughs passing between pairs of landmarks.
Note that the the position of the globally optimal pose will
move for different landmark configurations. In addition,
we assumed that there is no correlation between individual
landmarks, or between the robot’s pose and individual
landmarks. In fact, such correlations play an important role
in map inference, and can not be lightly discounted. We
will defer this issue for future work.

In the following section, we present experimental results
illustrating that exploration that aims for stability, in addi-
tion to information gain, yields more accurate maps.
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Fig. 3. Conditioning of the update problem based on robot position, for
a) three landmarks and b) four landmarks

IV. EXPLORATION POLICIES

Our exploration approach will operate under the fol-
lowing assumptions. First, the world is populated with a
set of n landmarks, whose positions are initially unknown
(but the value of n is assumed to be known). The envi-
ronment is free of obstacles. The EKF will maintain the
pose (x, y, φ) of the robot, and the landmark positions
{(x1, y1), . . . , (xn, yn)}.

At each time step, the robot executes an action u,
followed by an observation z. The observation z re-
turns (noisy) bearing measurements to those landmarks in
the environment that are within the range of the sensor
[min range,max range]. Data association is assumed
to be perfect, and the sensor is assumed to have a full
360 degree field of view. When a landmark is observed for
the first time, its position is initialized in the filter to be
located at the mean of the sensor range, and its covariance
initialized to have a standard deviation of half the sensor
range:

σr =
max range− min range

2
(15)

In real-world applications with obstacles, these sensor
ranges may not be so easily estimated, and other initial-
ization schemes may be required. For the experiments pre-
sented here, one might consider initializing the landmark
position at the maximum sensor range, since the robot will

typically see landmarks for the first time when the robot
moves within range of them. However, our experiments
suggest that the current initialization scheme is reasonable.

We have designed three exploratory policies to evaluate.
They are described below and illustrated in Figure 4.

• Random Pose: The robot drives to successive ran-
dom poses in the environment.

• InformationGain: The robot drives directly to the
globally optimal position for maximizing information
gain. The global maximum is found by hill-climbing
from each landmark estimate, as well as from the
robot’s current pose.

• Voronoi: The robot traces out the Voronoi graph
(VG) defined by the landmarks. Specifically, the robot
attempts to visit each junction of the VG at least
once by following routes that pass between nearby
landmarks.

The choice of the Voronoi graph-based approach is
motivated by Figure 3. While the VG doesn’t strictly trace
the optimal path for filter conditioning, it will steer the
robot away from regions that tend towards ill-conditioned
updates, and towards regions that are well-conditioned.
Furthermore, the VG can be efficiently computed from the
landmark estimates and by covering the VG the robot can
ensure adequate coverage of the environment. It should
be noted that the VG approach does not abandon an
information theoretic approach completely, as it ensures
that the robot will pass near each landmark, and does
so in a way that does not lead to instability. There are
other appealing aspects to this approach, since typically
landmarks would correspond to obstacles in the world, and
the VG maximizes the safety of the robot (see also [11]).

A. Coverage

The latter two exploration policies assume that the robot
has a list of landmarks to consider, either for computing the
VG or for locally optimizing information gain. However,
some landmarks may not yet be discovered. In order to
ensure coverage of the environment so that each landmark
is discovered, the world is initially populated with a set of
dummy landmarks. As each landmark is observed for the
first time, a dummy landmark is removed. Planning uses
the set of known and dummy landmarks. When the robot
moves to a pose where it expects to observe a dummy, and
fails to do so, the dummy is relocated to an unexplored
region of space. While this approach can have drawbacks,
it drives exploration and in the limit will guarantee that all
landmarks are observed.

It should be noted that the non-random strategies make
strictly local planning decisions in space (such as moving
to the nearest unexplored voronoi junction), and in time (by
greedily moving to the maximally informative pose without
considering future plans). In practice, this approach can
lead the robot in large loops, making loop closure difficult.
Despite this fact, we have found that in general the robot
correctly closes loops, and divergence usually occurs more
often where the robot moves to places where the filter
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Fig. 4. Exploration Policies: a) RandomPose, b) InformationGain, c) Voronoi. Refer to the text for details.

update is ill-conditioned or ill-posed. The author notes that
the general problem of how to optimally move a robot so
as to close loops frequently and accurately remains a rich
area of study.

V. EXPERIMENTAL RESULTS

We have run the three exploration policies in a simulated
environment with a variety of settings. For all experiments,
the map region was confined to a 200m by 200m plane. For
each trial, a map containing 20 landmarks was generated
by randomly sampling uniformly from the map region. To
ensure coverage, we initially distributed a set of dummy
landmarks for planning that are removed as real landmarks
are discovered, and relocated when the robot explores
territory near them. This approach guarantees that under
normal conditions all three policies will eventually explore
the entire environment.

For individual trials, each run consisted of 2000 time
steps in which an action consisted of a rotation to a
desired heading followed by a translation of at most 1m.
Note that this motion model is non-linear. The robot’s
maximum sensor range was 40m and the minimum sensor
range was 2m. Finally, three observation noise models
were employed. All three models assumed that bearing
observations were zero-mean normally distributed with a
variance that is constant with respect to landmark distance.
The standard deviations of the noise were set to 1 degree,
5 degrees and 10 degrees respectively.

For each exploration policy, and for each observation
noise model, a total of 100 trials was conducted. Figure 4
illustrates a typical map constructed by each exploration
strategy. The estimated trajectory of the robot is marked
and the landmark estimates are plotted, along with (some-
times elongated) ellipses indicating the landmark covari-
ances.

Figure 5 depicts the results from our experiments. The
first plot indicates the mean error in the map (ground
truth landmarks versus landmark estimates). Since the map
is invariant to rigid transformations, the estimated map
is first corrected by a global rotation about the robot’s
starting pose to bring it to closest correspondence to the

actual map. The second graph plots the mean number of
landmarks discovered by each exploration policy over the
100 trials. There are two reasons why all 20 landmarks
might not be discovered in any particular trial: the policy
might spend too much time in explored regions to cover
all the unexplored space within 2000 time steps, or, the
policy might be susceptible to divergence, so that the robot
is incapable of successfully navigating to the locations of
unvisited landmarks.

The experimental results support our analysis: tracing
the Voronoi graph of the landmarks results in signifi-
cantly higher accuracy than the other policies. In addition,
on average the Voronoi-based approach achieved greater
coverage of the environment, further confirming that the
approach provides enhanced stability.

VI. CONCLUSION

We have examined the stability of the bearings-only si-
multaneous localization and mapping problem. The results
presented here suggest that information-driven approaches
to SLAM can introduce instabilities that eventually lead
to catastrophic divergence. A series of exploratory policies
was investigated that support this observation, where the
most accurate policy was one that aimed specifically for
stability, rather than rapid convergence in the state covari-
ance. It should be noted that in general this policy failed to
cover the entire map region in the time alloted, suggesting
a trade-off between accuracy and coverage. This trade-off
has also been observed in other exploration contexts [12].

While we have examined only an application of the EKF
to the bearings-only case, this analysis can be easily ex-
tended to range-and-bearings mapping and other represen-
tations (e.g. [13], [14]). It should be noted that while several
other representations have demonstrated superior efficiency
at solving large-scale SLAM problems, the Kalman Filter
is generally considered to be more accurate. Given that
divergence in the EKF is in large part due to the linearity
assumption, other linear, Gaussian models will share a
similar susceptibility to divergence. Short of representing
the full, non-Gaussian posterior distribution over maps, we
anticipate that applying other representations will bear out
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similar results– information driven exploration can come
at the cost of accuracy. Formalizing this trade-off (between
information gain and stability) is a major topic for future
consideration.

It should be noted that the robot’s motion model did
not figure in our analysis. Instead, we focused on com-
puting optimal observation poses independent of variations
(and correlations) in the pose covariance. A full solution
will invariably need to take these variations into account.
However, we contend that the motion model only indirectly
contributes to the stability of the measurement update prob-
lem and that the more important quantity is the operating
point of the linearization, as determined by the robot pose
and landmark estimates.

A second significant assumption is that of perfect data
association. While in vision settings data association meth-
ods are becoming increasingly reliable, incorrect data as-
sociations can occur and cause filter divergence. In the
information-driven exploration context, driving a robot to
regions where the observation is highly uncertain will
surely lead to difficulties in data association. We will defer
this question to future work.

Another important direction for future work is to con-
sider a bearings sensor with a limited field of view, such
as would be exemplified by a monocular camera. Finally,
the applications of these results extend beyond robotic
exploration to other state estimation tasks. Our future work
will examine related problems and applications in this
domain.
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