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Abstract

We examine the problem of learning a visual map of
the environment while maintaining an accurate pose
estimate. Our approach is based on using two robots
in a simple collaborative scheme; in practice, one of
these robots can be much less capable than the other. In
many mapping contexts, a robot moves about collect-
ing data (images, in particular) which are later used
to assemble a map; we can think of map construction
as a training process. Without outside information, as
a robot collects training images, its position estimate
accumulates errors, thus corrupting its knowledge of
the positions from which observations are taken. We
address this problem by deploying a second robot to ob-
serve the first one as it explores, thereby establishing
a virtual tether, and enabling an accurate estimate of
the robot’s position while it constructs the map. We
refer to this process as cooperative localization. The
images collected during this process are assembled into
a representation that allows vision-based position esti-
mation from a single image at a later date. In addition
to developing a formalism and concept, we validate our
results experimentally and present quantitative results
demonstrating the performance of the method in over
90 trials.

1 Introduction

Map construction is essential to robot autonomy. The
tasks of path-planning, localization, and reasoning
about the environment depend highly on an accurate
and robust representation of the world. Furthermore,
a representation of the robot’s environment is essen-
tial to the tasks of teleoperation and debugging remote
systems. Examples of useful representations include
measures of radiation hot-spots, magnetic declination,
sonar and other range-based representations, and vi-

sual maps[1, 2, 3]. Of these representations, visual
maps offer significant advantages in terms of the rich-
ness of the sensor output, the potential for construct-
ing low-cost systems and the utility of the map for
application to human-oriented problems such as vir-
tual environment representation. We are interested, in
particular, in constructing a vision-based representa-
tion of the environment that allows us to subsequently
estimate the robot’s position accurately from the ap-
pearance of a single image. To do this, however, we
need to initially collect training data which is the key
focus of this paper.
A significant issue faced by many map-building
schemes is the accumulation of positional error as
the robot collects observations from the environment.
That is, as the robot undertakes successive actions, it
becomes more uncertain of where it is– leading to a
corrupted, or even useless map. In some cases, one
can exploit correlation between observations either in-
crementally or in a batch mode, for example using
expectation-maximization (EM), to correct the obser-
vation poses [4]. However, it is often the case that
either there is insufficient geometric constraint in the
observations to produce confident pose estimates even
post hoc, or, especially in the case of a monocular vi-
sion sensor, the computational cost of making the ap-
propriate inferences is infeasible. Other methods such
as Kalman filtering can reduce the severity of the prob-
lem, but certainly do not eliminate it.
Our visual mapping paradigm develops an implicit
representation of visual features, or landmarks [5].
Landmark-based representations allow simultaneously
for a reduction in processing requirements and robust-
ness in dynamic environments, such as those populated
with other agents. One of the requirements of this rep-
resentation is that a relatively dense sampling of robot
positions must be taken in order to reliably track and
model the visual features. As such, the robot performs
a large number of noise-prone incremental operations,



which lead to a rapid degradation of its pose estimate,
as illustrated in Figure 1.
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Sample Trajectory of the Mapping Robot (solid: Tracker, dash−dot: Odometer)

Figure 1: Dead-reckoning estimate versus actual robot
trajectory.

Accurate pose estimates are important to the collec-
tion of calibrated measurements, which may be useful
to tasks beyond that of mapping. Our approach to
this problem entails the use of multiple robots working
together (Figure 2). Several authors have considered
the use of marsupial robots or robot teams either in
theory or practice [6, 7]. Others have examined the
problem of distributing exploration tasks for efficient
coverage of space and time [8]. Our work seeks to ex-
ploit robot collaboration for an explicitly quantitative
mapping task, where one robot provides a local frame
of reference during exploration.
In this framework, the robot collecting measurements
for the map operates in concert with a second robot
that acts as an active observer. In our cooperative lo-
calization scheme, this second robot tracks the motions
of the first as it collects data and provides it with the
information required to prevent odometric error from
accumulating. In this sense, a virtual tether is estab-
lished between the two robots that enables the task
of mapping to be accomplished without significant er-
ror. In principle, more than one of these active ob-
servers could be used simultaneously, although this is
not elaborated in this paper. Note that, in the case
of homogeneous robotic teams, once the map is con-
structed it can be used by each robot for independent
navigation and localization.
This paper provides a quantitative evaluation vali-
dating the effectiveness of the methodology outlined
above. The remainder of this paper is structured as fol-

lows: Section 2 discusses related work that addresses
the problem of minimizing localization error during ex-
ploration and Section 3 describes our approach to the
pose-correction problem. We then discuss the applica-
tion of this approach to the problem of visual landmark
learning in Section 4 and experimental results are pre-
sented in Section 5. Finally, we discuss open questions
and future directions in Section 6.

2 Related Work

The problem that we have described is closely related
to the problem of simultaneous localization and map-
building, wherein the robot is tasked to explore its
environment and construct a map [9]. In the context
of terrain coverage in particular, Balch and Arkin were
among the first to quantitatively evaluate the utility of
inter-robot communication [10]. Mataric was another
pioneer in considering utility of inter-robot communi-
cation in space coverage [11]. Dudek, Jenkin, Milios
and Wilkes proposed a multi-robot mapping strategy
akin to that proposed here, but they only considered
certain theoretical aspects of the approach as it ap-
plied to very large groups of robots. Several authors
have also surveyed the range of possible approaches for
collaborative robot interactions [12, 13, 14, 15].
A number of authors have considered pragmatic multi-
robot map-making in particular. Most existing ap-
proaches operate in the sonar domain, where it is rela-
tively straightforward to transform observations from
a given position to expected observations from nearby
positions, thereby exploiting structural relationships
in the data [16, 8, 7]. These approaches successfully
apply the probabilistic expectation maximization (EM)
paradigm to the task by iteratively refining the map
and the estimates of the observation points. In addi-
tion, these multi-robot approaches focus on the effi-
cient division of labour.
In other work, Rekleitis, Dudek and Milios have
demonstrated the utility of introducing a second robot
to aid in the tracking of the exploratory robot’s
position[17]. In that work, the robots exchange roles
from time to time during the exploration of a polygon-
shaped world, thus serving to minimize the accumula-
tion of odometry error. The authors refer to this pro-
cedure as cooperative localization. This paper builds on
these results by Rekleitis et al by considering the task
of exploring the visual domain. In particular, in this
paper we deal with the acquisition of a visual represen-
tation of the environment. We also assume different
roles for the two robots, which would permit the use



of robots with very different capabilities. In the fol-
lowing section, we describe the method employed for
tracking the position of the robot as it explores.

3 Robot Tracker

We have constructed a tracking device that can esti-
mate the position and orientation of a mobile robot
relative to a base robot equipped with a laser range-
finder. The motion planning strategy is such that at
any time one of the robots is stationary while the other
robot is moving. The stationary robot acts as an artifi-
cial landmark in order for the moving robot to recover
its pose with respect to the stationary one. Therefore,
a detectable landmark is provided without any modifi-
cation of the environment. We call this approach Co-
operative Localization. Different types of sensors could
be used depending on the required precision of the spe-
cific task. In earlier work a visual tracker with a helical
pattern on the target robot was used, resulting into a
3-5cm accuracy in the position and a 3− 7◦ accuracy
in the orientation [17]. Currently we employ an Accu-
Range laser range-finder mounted on one robot and a
three plane target mounted on the observed robot (see
Figure 2). The target is a set of three vertical planes
extending from the center of the target at three dis-
tinct angles (approximately 100◦, 120◦, 140◦). At any
given orientation of the target robot at least two ver-
tical planes are “visible”. The intersection of the two
planes define a unique point in a fixed position with
reference to the observed robot. Further on, the angle
between the two planes combined with their orienta-
tions provides an estimate for the orientation of the
robot.

Figure 2: The two robots during the exploration of our
laboratory.

The precision of the laser rangefinder subsystem is
much higher than the precision of the visual tracker.
The position estimation is accurate to half a centime-
ter and the orientation estimation error is below one
degree.
The Robot Tracker returns a triplet of T =< ρ φ θ >
that represent: ρ the distance between the two robots,
φ the angle at which the observing robot sees the ob-
servable robot (eg. in Figure 3 the angle the stationary
robot sees the moving robot), and θ the orientation of
the observed robot as observed by the observing robot
(eg. the orientation of the moving robot in Figure 3).
As can be seen in Figure 3 both configurations are
feasible (any of the two robot could observe). If the
stationary robot is equipped with the laser then the
Pose (Xm) of the moving robot is given by equation
1, where < xs, ys, θs > is the pose of the stationary
robot. If the moving robot is equipped with the laser
then its Pose (X′m) is given by equation 2.

Xm =

 xm
ym
θ̂m

 =

 xs − ρ ∗ cos(θ̂s + φ̂)
ys − ρ ∗ sin(θ̂s + φ̂)
π + φ̂+ θ̂s + θ̂

 (1)

X′m =

 x′m
y′m

θ̂′m

 =

 xs − ρ ∗ cos(φ̂− θ̂s)
ys − ρ ∗ sin(φ̂− θ̂s)
π + φ̂+ θ̂s − θ̂

 (2)
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Figure 3: Observation of the Moving Robot by the
Stationary Robot. Note that the “camera” indicates
the robot with the Robot Tracker.

4 Visual Map Learning

We now consider the application of our approach to
the task of learning a visual representation of the en-
vironment. This demonstrates the performance of the



method over a large number of sample locations in
the map construction process, as well as a large set of
subsequent test cases. The tracker is employed to pro-
vide “ground truth” positions while the robot collects
training images. We employ the landmark learning
framework described in [5] and [18], which tracks a set
of salient features using an arbitrary model of visual
attention and attempts to construct a set of genera-
tive representations of the landmark attributes as a
function of the pose of the robot.
The generative nature of each landmark model is use-
ful for the task of probabilistic robot localization. That
is, we can construct a likelihood function which allows
us to measure the likelihood of an observation z, as-
suming knowledge of the robot’s pose q, p(z|q). Such
a likelihood function can be employed in a Bayesian
framework to infer the probability distribution of q
given the observation z:

p(q|z) =
p(z|q)p(q)

p(z)
(3)

where p(q) represents the prior information about q
and p(z) is a constant relative to the independent vari-
able q. Note that this framework is more generic than
a Kalman filter in that it allows for a multimodal rep-
resentation of the pose likelihood.
When the robot requires a pose estimate without the
aid of the tracker, it can obtain a camera image and
locate the learned landmarks in the image using the
predictive model. The difference in appearance and
position between the prediction and the observation
is used to compute the likelihood of the observation
in the Bayesian framework. The maximum likelihood
pose estimate can be recovered by gradient ascent over
the likelihood as a function of pose. An example like-
lihood function is plotted at a coarse scale in Figure 4.
Note that the pose likelihood is a useful measure of
confidence in the final estimate.

5 Experimental Results

In this section we present the results of deploying the
tracking method for the task of landmark learning.
Our operating environment was an open laboratory
workspace. At the outset, one robot remained station-
ary while the other used a seed-spreader exploration
procedure [19] across the floor, taking image samples
at 25cm intervals, and in four orthogonal viewing di-
rections, two of which are illustrated in Figure 5.
The trajectory of the exploratory robot was defined at
the outset by a user. However, as the robot explored,
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Figure 4: The likelihood of an observation as a func-
tion of pose.

accumulated error in odometry resulted in the robot
straying from the desired path. The differential drive
configuration of the exploratory robot, coupled with
frequent rotations to capture the four viewing direc-
tions led to a rapid, and somewhat systematic degra-
dation in dead reckoning, as illustrated in Figure 6,
where the uncorrected odometric trajectory is plotted
as a dash-dotted line, and the actual trajectory of the
robot, as observed by the tracker, is plotted as a solid
line. The accumulated odometric error is plotted ver-
sus total distance traveled in Figure 7.
Once image samples were obtained using the tracker
estimates as ground truth position estimates, it was
possible to apply our landmark learning framework to
the image samples in order to learn a mapping be-
tween appearance-based landmarks and the pose of
the robot. Training was applied separately to each of
the four viewing directions, developing a set of tracked
landmark observations.
Our final experiment involved navigating the robot to
a series of 93 random positions and acquiring images
along the four orthogonal viewing directions. Image-
and tracker-based maximum likelihood pose estimates
were then generated for one of the viewing direc-
tions, and outliers removed on the basis of a likelihood
threshold. Of the 93 observations, 29 estimates were
rejected. In general, these outliers corresponded to ob-
servations where the robot was very close to the wall
it was facing. One would expect that an observation
from a different viewing direction would return an es-
timate with higher confidence. We have omitted this
application for the sake of brevity.
The remaining 64 image-based estimates of high con-
fidence are plotted with their associated tracker-based



Figure 5: Opposing views of the lab as seen by the
robot.

estimates in Figure 8. Assuming that the tracker-
based position is correct, the mean error in the image-
based estimate was 17.3cm.
In another experiment (reported elsewhere [18]) the
two robots travelled through two rooms. By exchang-
ing roles of moving and providing a fixed reference
point they succesfully mapped two areas 3m by 4m
each. The localization results showed an average error
of 13.3cm.

6 Conclusions

We have presented a method for the automatic map-
ping of a visual arbitrary environment which utilizes
cooperative localization in order to maintain a virtual
tether between two robots as one explores the environ-
ment and the other tracks its pose. The method re-
lies on a mounted target whose pose can be estimated
using a laser range-finder. The need for such an ap-
proach to maintaining a “ground truth” estimate of
the exploring robot is validated by the magnitude of
the accrued odometric error in our experimental re-
sults. Furthermore, we have validated the utility of
a set of learned landmarks for localization when the
second robot cannot be deployed.
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Trajectory of the Mapping Robot (solid: Tracker, dash−dot: Odometer)

Figure 6: Odometric (x) vs Tracker-corrected (o) tra-
jectories of the robot.
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Figure 7: Odometric error versus distance traveled.

Since our approach (unlike [17]) assumes one robot
does almost all the terrain coverage while the ob-
server robot remains largely stationary, one could posit
the use of two rather different robots in this context.
While the moving robot needs to cover a substantial
amount of terrain rapidly, it does not need to have
a very good internal odometry estimate since that is
taken care of by the collaborative observation strategy.
The stationary robot, on the other hand, only has to
move between observation posts and, as such, it can
be slower; in principle, it might move only with the
assistance of the other robot.
Our results demonstrate that the virtual tether strat-
egy can be used to provide an accurate visual map
of the environment. This representation can then be
used to accurately estimate the position of a single
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Figure 8: Tracker estimates vs Image-based estimates
for a set of 98 random positions.

robot from a single image, as demonstrated on over
90 independent trials. In addition, it would be pos-
sible to construct a non-visual map (such as a range
map) using the same type of virtual tether method-
ology. Finally, it is worth noting that the map be-
ing constructed could be used for incremental position
estimation in combination with the virtual tether for
even greater accuracy.
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